ety

B megiEerawy

Architecture Made Simple

SYSML PLUGIN

version 17.0.1

user guide

No Magic, Inc.
2011

All material contained herein is considered proprietary information owned by No Magic, Inc. and is not to be
shared, copied, or reproduced by any means. All information copyright 2006-2011 by No Magic, Inc. All Rights
Reserved.

CONTENTS

SYSML PLUGIN FOR MAGICDRAW 6

4.1 Creating Blank SysML Project 8

4.2 Creating New SysML Project from Specified Template 9
4.3 Using OMG SysML Style 10

4.4 Using QUDV Model Library 13

4.5 Using Quick Search Dialog 13

5.1 SysML Block Definition Diagrams (BDD) 14
5.1.1 SysML BDD Metamodel and Elements 14
5.1.2 SysML BDD Toolbar 17
5.1.3 SysML BDD Specific Features 20
5.1.4 Creating Instances of Blocks with Complex Structure 28
5.1.5 Using SysML BDD Elements 45
5.1.6 Converting Data Types to SysML Value Types 47
5.1.7 SysML Callout Box 50
5.2 SysML Internal Block Diagrams (IBD) 53
5.2.1 SysML IBD Metamodel and Elements 53
5.2.2 SysML IBD Toolbar 55
5.2.3 SysML IBD Specific Features 56
5.2.4 Displaying Structures of Blocks in Compartments or in IBDs 73
5.2.5 Extract Structure 77
5.2.6 Using SysML IBD Elements 82
5.3 SysML Package Diagrams 88
5.3.1 SysML Package Diagram Metamodel and Elements 89
5.3.2 SysML Package Diagram Toolbar 90
5.3.3 Using SysML Package Diagram Elements 91
5.4 SysML Parametric Diagrams 93
5.4.1 SysML Parametric Diagram Metamodel and Elements 94
5.4.2 SysML Parametric Diagram Toolbar 95
5.4.3 SysML Parametric Diagram Specific Features 97
5.4.4 Using Parametric Diagram Elements 98
5.5 SysML Requirement Diagrams 99
5.5.1 SysML Requirement Diagram Metamodel and Elements 100
5.5.2 SysML Requirement Diagram Toolbar 103
5.5.3 SysML Requirement Diagram Specific Features 104
5.5.4 Numbering Requirement IDs 106
5.5.5 Using SysML Requirement Diagram Elements 118
5.5.6 SysML Requirements Table 122
5.6 SysML Activity Diagrams 134
5.6.1 SysML Activity Diagram Metamodel and Elements 134
5.6.2 SysML Activity Diagram Toolbar 135
5.6.3 SysML Activity Diagram Specific Features 138
5.6.4 Using Activity Diagram Elements 144
5.7 SysML Use Case Diagrams 149
5.7.1 SysML Use Case Diagram Metamodel and Elements 150
5.7.2 SysML Use Case Diagram Toolbar 152
5.7.3 SysML Use Case Diagram Specific Features 153
5.7.4 Using SysML Use Case Diagram Elements 155

CONTENTS

6.1 Active Validation 161
6.1.1 Active Validation Options 164
6.2 SysML Constraints 167

7.1 Expanding and Suppressing Feature-based Compartments 172
7.2 Displaying Options in Feature-based Compartments 175

8.1 Progressive Reconfiguration 175

8.2 Deep Reconfiguration 176

8.3 Context-Specific Value Compartments 177
8.3.1 Advantages of Context-Specific Value Compartments 177
8.3.2 Using Context-Specific Value Compartments 177
8.3.3 Displaying Context-Specific Value Compartments 178
8.3.4 Selecting the Context of Context-Specific Value Compartments 180
8.3.5 Customizing Context-Specific Value Compartment Display 181
8.3.6 Value Propagation 183

9.1 Opening Structure Browser 186

9.2 Customizing Structure Browser Display 187
9.2.1 Structure Browser Shortcut Menu 187
9.2.2 Structure Browser Toolbar 187

9.3 Display Options 188
9.3.1 Display as Plain List 188
9.3.2 Show Inherited Structure 189
9.3.3 Show Full Type in Browser 190
9.3.4 Show Applied Stereotypes in Browser 190
9.3.5 Show Auxiliary Resources 191
9.3.6 Filter 191

9.4 Additional Structure Browser Menus 191
9.4.1 Go To > Type <name> in Structure Tree Menu 192
9.4.2 Go To > Owner Menu 192

9.5 Additional Diagram Menu 193
9.5.1 Select in Structure Tree Menu 193

10.1 Opening Dependency Matrix 195
10.2 Working with Dependency Matrix Templates 197
10.3 SysML Editable Matrices 198

10.3.1 SysML Allocation Matrix 198

10.3.2 SysML Satisfy_Requirement Matrix 199

10.3.3 SysML Verify_Requirement Matrix 200

10.3.4 Creating SysML Editable Matrices 201

10.3.5 Building Matrices 204

10.3.6 Editing Matrix 205

11.1 Working with Teamwork Project 207

12.1 Report Wizard 208

12.2 Requirement Report Templates 213
12.2.1 Requirement Diagram 214
12.2.2 Requirement Table (Type A) 214
12.2.3 Requirement Table (Type B) 215
12.2.4 Requirement Report 216
12.2.5 Coverage Analysis 220

4 Copyright © 2006-2011 No Magic, Inc.

CONTENTS

12.2.6 Requirement Dependencies Report 221

12.2.7 Requirements Table Diagram Report 225
12.3 Allocation Report Templates 226

12.3.1 Allocation Table (Type A) 227

12.3.2 Allocation Table (Type B) 227

12.3.3 Allocation Table (Type C) 227

13.1 QUDV Model Library in SysML Plugin 228
13.1.1 QUDV 228
13.1.2 Sl Definitions 228
13.1.3 Sl Specializations 228
13.1.4 Sl Value Type Library 229
13.2 Migrating Existing SysML Project To Use QUDV Model Library 230
13.2.1 Using QUDV Model Library in SysML Project 230
13.2.2 Replacing/Modifying Existing Value Types 230
13.2.3 Modifying Units and Quantity Kinds of Existing Value Types 231
13.3 Creating New Quantity Kind, Unit or Value Type in QUDV Library 231
13.3.1 Creating New Quantity Kind 231
13.3.2 Creating New Unit 232
13.3.3 Creating New Value Type 232
13.4 Validation Rules for Detecting the Using of Obsoleted Units and Quantities 234

15.1 Stereotype Usage 236
15.1.1 SysML Profile 236
15.1.2 MD Customization for SysML Profile 236

5 Copyright © 2006-2011 No Magic, Inc.

SYSML PLUGIN FOR
MAGICDRAW

Systems Modeling Language (SysML) is designed to unify the diverse modeling languages currently used by
system engineers, the same way Unified Modeling Language (UML) is used in the software industry to unify
the modeling languages used by software engineers.

SysML supports the specifications, analysis, designs, verifications, and validations of a broad range of complex
systems.

In addition to supporting all SysML diagrams (Block Definition, Internal Block, Package, Parametric, Require-
ment, Activity, and Use Case diagrams), SysML Plugin also makes it possible for MagicDraw to support addi-
tional specifications, analysis, designs, and validations on a broader range of systems and system integrations.

SysML sample projects are available in the <md.install.dir>/samples/SysML directory.

To install SysML Plugin, either (i) follow the manual installation instructions if you have already downloaded the
plugin, or (ii) use Resource/Plugin Manager in MagicDraw to download and install the plugin.

(i) To install SysML Plugin following the manual installation instructions on all platforms:

1. Download the SysML_Plugin_<version number>.zip file.
2. Exit the MagicDraw application currently running.

3. Extract the content of SysML_Plugin_<version number>.zip file to the directory where your
MagicDraw is installed, i.e. <md.install.dir>.

4. Restart the MagicDraw application.

(i) To install SysML Plugin using Resource/Plugin Manager:

1. Click Help > Resource/Plugin Manager on the MagicDraw main menu. The Resource/
Plugin Manager will appear and prompt you to check for available updates and new resources.
Click Check for Updates > Check.

NOTE ‘Specify HTTP Proxy Settings for connection to start MagicDraw updates and resources.

2. Select the SysML Plugin check box and click Download/Install.
3. Restart the MagicDraw application.

In keeping with SysML unifying purpose, the System Engineer perspective was created to unify the diverse
modeling languages currently used by system engineers. All the features dedicated to SysML are accessible.

What you will have to do to access the System Engineer perspective depends on whether you are:

(i) launching MagicDraw for the first time after SysML Plugin has been installed or,

System Engineer Perspective

(i) switching to the System Engineer perspective from any other perspectives.

(i) If you are launching MagicDraw for the first time:

1. The following message dialog will open (Figure 1).
2. Click Yes to switch to the System Engineer perspective supporting SysML diagrams.

E Question f'5__<|

SysML plugin has been successfully installed.
Take a look at SwsML diagram samples located in the samples/SwsML Folder,

® To start working with a SwshL model, create a project from the SysML template (File- =Mew Project),
SysML diagrams are accessible from the System Engineer perspective (Options- = Perspeckives),

Do you wank ko switch to the System Engineer perspective now?

Figure 1 -- Launching MagicDraw with SysML Plugin Message Dialog

(i) To switch to the System Engineer perspective from any other perspectives:

1. Click Options > Perspectives > Perspectives on the MagicDraw main menu.
2. Select System Engineer from the Select Perspectives dialog and click Apply (Figure 2).

Choose MagicDraw perspective ;
Choosing perspective will switch MagicDraw to the graphical :

user interface designed for a specdific role (business fsystem
analyst, architect, etc.).

s

DoDAF Architect [
Full Featured
Quick Start ’

Software Architect ‘
system Analyst (Current)

S -
O

If the ‘Expert’ box is chedked, the interface will be complex and have all detzils
exposed. Un-chedk 'Expert’ if you are a new user. Non-expert mode anly
exposes important/common options and data in the user interface.

Expert mode can be changed for a project at any time.

Description

Perspective provides set of features dedicated to system engineers, SysML
support is accessible, Reguirements elidtation, and modeling features are
highlighted. Configuration is modeling oriented. UML modeling features, code
engineering, transformations, and other non-system modeling related features
are hidden.

Figure 2 -- Select Perspectives Dialog

Copyright © 2006-2011 No Magic, Inc.

Working with SysML Projects

For more information on how to work with perspectives, see Perspectives Selection and Customization in the
‘Getting Started’ section in the MagicDraw User Manual.

Depending on whether you want to:

(4.1) Creating Blank SysML Project;

(4.2) Creating New SysML Project from Specified Template;
(4.3) Using OMG SysML Style

(4.4) Using QUDV Model Library; or

(4.5) Using Quick Search Dialog,

you will have to follow different procedures.

4.1 Creating Blank SysML Project

To create a new workspace for a blank project:

1. You can;
(i) click File > New Project on the MagicDraw menu,
(ii) click the New Project button on the main toolbar, or
(iii) press CTRL+N (keyboard shortcut).
The New Project dialog will open (Figure 3).

2. Click the SysML Project icon (Figure 3).
3. Enter the file name in the Name box.
4. Click the “...” button to locate where to store the newly-created project.

5. Click OK.
If the current perspective is not set to ‘System Engineer’ perspective, the Open Associated Per-
spective dialog will open (Figure 4). Select Yes to set the current perspective to System Engi-
neer to start model SysML.

Working with SysML Projects

Create a new blank SysHML project
Systems Modeling Language (SysML) is designed for systems engineering applications. Creating a new SysML project will switch
MagicDraw to SysML araphical user interface (System Engineer perspective), Essential SysML profiles and model libraries will be
used in the created SysML project, Specify a project name, select a location to store the project, and then press OK,

Mame: |Untited2

General-Purpose Modeling e
[[&
Project location: | <User.home =MD _projects\SysMLY :]
ML Guide to
- e e Dl.agrams [] create directory for project and related data
Project
£ 5]
Project Use Case
from Existing Project

Source Code

L

Business Process M{_:deling
 Enterprise Modeling

|| 4

Systems Engineering

&
st

SysML
Project

Other |Create a new blank SysML project. 51 ValueType and QUDV model libraries also loaded. |

Figure 3 -- New Project Dialog

X Open Associated Perspective? E'

This kind of project is associated with the Systern Engineer perspective,

® Do o wank ko open this perspective now?

Figure 4 -- Open Associated Perspective dialog

4.2 Creating New SysML Project from Specified Template

To create a new SysML project from a specified template:

1. You can:
(i) click File > New Project on the MagicDraw menu,

(i) click the New Project button on the main toolbar, or
(iii) press CTRL+N.
The New Project dialog will open (Figure 5).

2. Click the Project from Template icon (Figure 5).
3. Enter the file name in the Name box.

Copyright © 2006-2011 No Magic, Inc.

Working with SysML Projects

4. Click the “...” button to locate where to store the newly created project.
5. Select the SysML template from the Select template tree and click OK (Figure 5).

Create a new project from a template

A project created from a template will contain & predefined project structure and customized graphical user interface. Specfy a
project name, select a location to store the newly created project, choose a project template, and dick QK.

General-Purpose Modeling 4 |[# | Name: |Untitled3
O [
Project location: |<User.home =\MD_projectsiSysMLY :]
LML Guide to
Project LML D@grams [[] create directory for project and related data
Project
c}g_'l @ Select template
Project Use Case =) RUP [*]
from Existing Project E| | SysML
Source Code =] Sram
Business Process Modeling B~ | Use Case modeling 3]
_ El- | WAE
Enterprise Modeling Gl Ll wwem ["]

Systems Engineering
Other

Template description

|| 44 || 44| 42

Use this template to create a new SysML project using SvsML profile.
21 [Z» Also load ST ValueType and QUDV model libraries.
Project Process
from Template Guide
Praject ["]

Figure 5 -- Selecting SysML Template

For more information on how to work with a new project, see the ‘Working with Projects’ section in the
MagicDraw User Manual.

4.3 Using OMG SysML Style

SysML plugin provides the visual style of OMG SysML specifications (OMG SysML style) for using with your
SysML model. Such style is available with every new SysML project created by SysML 16.8 or newer.

To use OMG SysML style in a new SysML project:

1. Create a new SysML project (see 4.1 Creating Blank SysML Project or 4.2 Creating New
SysML Project from Specified Template).

2. On the main menu, select Options > Project.
3. The Project Options dialog will then display.

4. Select Symbols properties styles node (on the left), and then select the OMG SysML style in
the Symbols properties styles panel (on the right), as displayed in Figure 6.

5. Press Make Default button, and then press OK.
6. The OMG SysML style is now used as default in your SysML project.

10 Copyright © 2006-2011 No Magic, Inc.

Working with SysML Projects

N Project Options

----- [A @eneral project options Symbols properties styles

Default (Default)

=Rmlsybols properties styles Clone

E} 0] Defaulk {Default) OMG SyshL style :

i E,'—" Shapes Fenarme
B2 Paths
5% Diagram Delete

P e Skereatypes

- [0 OME SyshL skyle Make Default

BB Default model properties
B~ Code Engineering

g Code Generation
{;9 Reverse

@ Java Language Oplions
- bd 4+ Language Cptions
- b C# Language Cptions
- cbd COREA IDL 3.0 languag
-] DOL Language Options

Apply
Imnpork

Export

£ | >

Figure 6 -- Project Options Dialog - Set Symbol Properties Style

| R |

To apply OMG SysML style to an existing SysML project:

1. Open the SysML project.

2. On the main menu, select Options > Project.

3. The Project Options dialog will then display.

4. Select Symbols properties styles node (on the left), as displayed in Figure 6.

5. In the Symbols properties styles panel (on the right), if the OMG SysML style is not avail-
able, press Import button. The Open dialog will then open (Figure 7). In the dialog, select OMG
SysML style.stl located in <md.install.dir>/templates/SysML directory, and then press Open.
Select the style in the Symbols properties styles panel.

OR

If the OMG SysML style is available in the Symbols properties styles panel (Figure 6), just
select it.

11 Copyright © 2006-2011 No Magic, Inc.

Working with SysML Projects

Eﬂpen
Lack in: |[E|SysML Vl 5 ,?||E

X

B 0OMG SysML style.stl

B

My Recent
Dacuments

’

Desktop

|

&

My Dacurnents

My Computer

File name: [OMG SysML style.st [open |

Files of byvpe: | * o] v | Cancel

Figure 7 -- Open Dialog - Importing OMG SysML Style

6. Press Make Default button, and then press OK.

7. The OMG SysML style is now used as default in your SysML project. However, such style will
be applied only to new SysML diagrams yet to be created.

8. If you would like to also apply such style to existing SysML diagram(s), open the Project
Options dialog (Figure 6) again, select the style in the Symbols properties styles panel, and
then press Apply button. The Select Diagrams dialog will then display (Figure 8).

E Select Diagrams

emeral |

Marne Cnaner
|£| Stark -
@ Figure B.2 Defining v, .. [ModelingDomain T
@ Figure B.19 Internal ... H3UYModel: :HSUY Struct, .
|ﬁ| Figure B.33 Behavior .., |H3UWModel: :H3UY Beha. ..
@ Figure B.17 Internal ... H3UwModel: :HvbridsUy
|ﬁ| Figure B.35 Detailed ... H3UYModel::H3UY Beha. .,
@ Figure B.22 Consolid... |HSUYModel: :HSUY Struct, .
|£| rModeling tips H3wModel; :ModelingTips
|£| Explanations H3wModel; :Explanations
|£| Figure B, 16 Defining ... HSUYModel: :HSUY Skruct, .
|£| Figure E.15 Defining ... [H3UYModel: HSUW Struct,.. |

Select All Clear all

[Ik] [Cancel] [Help

Figure 8 -- Select Diagrams Dialog - Applying OMG SysML Style to Diagrams

12 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

9. Select the SysML diagram(s) the OMG SysML style will be applied to, and then press OK. In
the Project Options dialog, press OK.

NOTE

Applying OMG SysML style to existing SysML diagrams might distort the look of those
diagrams. For quick diagram look modification, use the Layout feature in MagicDraw,
available in the main menu.

4.4 Using QUDV Model Library

QUDV model library is introduced in Annex C: Non-normative Extensions, OMG SysML Specifications 1.2. This
model library is designed in such a way that extensions to the ISQ and S| can be represented, as well as any
alternative systems of quantities and units.

See 13. Model Library for Quantities, Units, Dimensions and Values (QUDV) for more detail on the model
library in SysML plugin.

4.5 Using Quick Search Dialog

To open the Quick Search dialog using a keyboard shortcut:

1. Press Crtl + Alt + F to open the Quick Search dialog (Figure 9).

Type Name:

Type text or wildcard (%, 7) to search E]

{(¥) Class or Interface () Any Classifier () Any Element () Diagram

Figure 9 -- Quick Search Dialog

2. Either (i) enter the name of the element or diagram sought or (ii) select the element or diagram
from the drop-down list box.

3. The diagram will open or the corresponding element will open in the Containment Tree.

SysML Plugin supports the following SysML diagrams:

e SysML Block Definition Diagrams (BDD)
e SysML Internal Block Diagrams (IBD)

e SysML Package Diagrams

e SysML Parametric Diagrams

e SysML Requirement Diagrams

e SysML Activity Diagrams

e SysML Use Case Diagrams

SysML Diagrams

e SysML Sequence Diagrams (similar to UML'’s one)
e SysML StateMachine Diagrams (similar to UML'’s one)

For more information on how to work with SysML diagrams, see the ‘Working with Diagrams’ section in the
MagicDraw User Manual.

5.1 SysML Block Definition Diagrams (BDD)

A Block Definition Diagram defines the features of a block and any relationships between blocks such as asso-
ciations, generalizations, and dependencies, in terms of properties, operations, and relationships (for example,
a system hierarchy or a system classification tree).

Block Definition Diagrams are based on UML class diagrams and include restrictions and extensions as

defined by SysML. They are generally used to display systems of blocks or show a system dictionary and/or
extensions.

5.1.1 SysML BDD Metamodel and Elements

bdd [Maodel] Data @ Block definition disgram]J

==metaclazz==
Class

I

L= ==stereatypes== <
—= Block <
[Clazz]

= = = =

==gtereatype== ==sterectype== ==sterectype== ==sterectype== ==sterectype==
Subsystem Domain System External System context
[Class] [Class] [Class] [Class] [Class]

Figure 10 -- Block Element and MagicDraw SysML Block Subtypes Metamodel

Icon Description
Block [SysML]:

E Blocks provide a general purpose capability to describe the architecture of a system,
and represent the system hierarchy in terms of systems and subsystems. Blocks
describe not only the connectivity relationships within / between a system and its sub-
systems, but also quantitative values as well as other information about that system (for
example, documentation).

SysML Diagrams

Icon

Description
Domain:

A Domain block represents an entity, a concept, a location, or a person from the real-
world domain. A domain block is part of the system knowledge [1].

External:

An External block is a block that represents an actor. It facilitates a more detailed mod-
eling of actors like ports or internal structures [1].

System:

A System is an artificial artifact consisting of blocks that pursue a common goal which
cannot be achieved by the system's individual elements. A block can be a software,
hardware, a person, or an arbitrary unit [1].

Subsystem:

A Subsystem is a typically large, encapsulated block within a larger system [1].
System Context:

A System context element is a virtual container that includes the entire system and its

— |actors [1].

bdd [Model] Data [@Blnck Definition Diagram]J bdd [Model] Data [@ Flowy Specification]J

z=metaclazss==
Class ==metaclazs==
T Interface
==sterectype==
Block
[Class]
s =
==sterectypes=
-[FlowSpecification
E [Irterface]
==szterectype==
ConstraimtBlock) o
[Clazz] Figure 12 -- Flow Specification Metamodel

Icon

Figure 11 -- Constraint Block Metamodel

Description
Constraint Block [SysML]:

Constraint Blocks provide a mechanism to integrate engineering analysis, such as per-
formance and reliability models, with other SysML models. Constraint Blocks can be
used to specify a network of constraints representing mathematical expressions, which
constrain the physical properties of a system. Constraint Blocks are generally defined
in Block Definition Diagrams, and then used in Parametric diagrams.

SysML Diagrams

Icon

Icon

Description
Flow Specification [SysML]:

A Flow Specification specifies inputs and outputs that can flow through a port in terms
of Flow properties. Flow Specifications are used by Flow Ports to specify what items
can flow via those ports.

Interface [UML]:

An Interface specifies operations or signals. If an Interface is provided to a port, the
external parts may call operations or send signals to the Block owning the port via that
port. If an Interface is required for a port, the Block owning the port may call operations
or send signals to its environment via that port.

bdd [Maodel] Data| @Valuewpe]J
smetackasss
DataType
Fu F 9 F 9 F 3
zmetaclas s
InstanceSpecification
(| (]| (=1
smetaclazss | wstereotypes wsterectypes wsterectypes
Enumeration | ValueType Unit QuantityKind
[DataType] [DataTvpe, InstanceSpecification] [DataType, InstanceSpecification]

Figure 13 -- Value Type, Unit, and Quantity Kind Metamodels

Description
Value Type [SysML]:

A Value Type is a type which defines values that can be used to provide information on
a system, but cannot be identified as the target of any reference. These values may be
used to type properties, operation parameters, or, potentially, other elements within
SysML.

Quantity Kind [SysML]:

A Quantity Kind (in SysML 1.0 and 1.1, called ‘Dimension’) is a kind of quantity that can
be measured using defined and unrestricted units of measurement. For example,
length, a quantity kind, may be measured by meter, kilometer, or foot units.

Unit [SysML]:

A Unit is a particular value that can be used to specify a quantity of a dimension. A unit
often relies on precise and reproducible measuring techniques. For example, a unit of
length such as meter may be specified as a multiple of a particular wavelength of light.
A unit can also use less stable or precise ways to express some values, such as costs
expressed in some currencies, or a severity rating measured by a numerical scale.

SysML Diagrams

Icon Description

Data Type [UML]:

=z |A DataType is a type whose instances are identified only by their values. A typical use
of Data Types would be to represent the primitive types of the programming language
used. For example, integer and string types are often treated as data types.

Enumeration [UML]:

literals to other packages or profiles.

g |An Enumeration is a kind of Data Type whose instances may be any of the user-pre-
defined enumeration literals. It is possible to extend the set of applicable enumeration

5.1.2 SysML BDD Toolbar

Button
Element (hot key)
Block:

See Section 5.1.1 for description.

=
(B)

Structured Block [SysML]:

A Structured block is a Block element that contains an Internal Block Diagram
and a hyperlink to it.

=

(SHIFT + B)
Constraint Block:
See Section 5.1.1 for description.

Domain:
See Section 5.1.1 for description.

External:
See Section 5.1.1 for description.

[[

Subsystem:
See Section 5.1.1 for description.

=
&
=

System:
See Section 5.1.1 for description.

System Context:
See Section 5.1.1 for description.

[

Value Type:

See Section 5.1.1 for description. [
Data Type:

See Section 5.1.1 for description. =
Quantity Kind:

See Section 5.1.1 for description.

17

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

Button
Element (hot key)
Unit:
See Section 5.1.1 for description.
Enumeration:
See Section 5.1.1 for description. g
(K)
Instance [UML]:
To create an instance specification of a classifier. =
(SHIFT + O)
Interface:
See Section 5.1.1 for description. —
0
Flow Specification:
See Section 5.1.1 for description. =
Port [UML]:
A Port defines an interaction point on a Block or a part, allowing you to specify i=

what can flow in/out of the Block/part or what services the block/part requires
(expects) from or provides (offers) to its environment. Ports are connected by
connectors to other parts or other ports.

Flow Port [SysML]:

A Flow Port is a port that specifies the input and output items that can flow
between a Block and its environment. Flow Ports are interaction points through
which data, material, or energy “can” enter or leave the owning Block. The
specification of what can flow is achieved by typing the Flow Port with a specifi-
cation of things that flow. This can include typing an atomic Flow Port with a
single type (Block, Value Type, or Signal) representing the items that flow in or
out, or typing a non-atomic Flow Port with a Flow Specification which lists mul-
tiple items that can flow. In general, Flow Ports are intended to be used for
asynchronous, broadcast, or send-and-forget interactions. Note that only non-
atomic Flow Ports can be conjugated. Once conjugated, all the directions of the
typing Flow Specification's items will be negated.

Interface Realization [UML]:

An Interface Realization is a specialized Realization relationship between a £
Classifier and an Interface. This relationship signifies that the realizing classi-
fier conforms to the contract specified by the Interface.

Link [UML]:
A Link is a connection between two objects. e
(SHIFT +L)

Association Block [SysML]:

An Association Block is an Association Class (a kind of Association) stereo- =
typed by «Block». Like any other Block, an Association Block can own proper-
ties and connectors.

SysML Diagrams

Button
Element (hot key)
Association [UML]:
An Association represents a semantic relationship between two classifiers. It is /

used for referencing two Blocks with one another, thus creating two Reference
Properties at both ends. The aggregation values of the both ends of an Associ- |(S)
ation are 'none'.

Directed Association [UML]:

A Directed Association is a one-direction Association which references from a A
Block to another Block, thus creating one Reference Property, typed by the tar-

get Block, in the source end. The aggregation value of the target end of a

Directed Association is 'none'.

Aggregation [UML]:

An Aggregation is a special form of Association that specifies a part-whole rela- o
tionship from an ‘aggregate’ (whole / source) to a ‘component part’ (target).

Creating an Aggregation will also create a Shared Property, typed by the ‘com- |(A)
ponent part’, in the ‘aggregate’ and a Reference Property, typed by the ‘aggre-

gate’, in the ‘component part’. The aggregation values of the target and source

ends are 'shared' and 'none’, respectively.

Directed Aggregation [UML]:

A Directed Aggregation is a one-direction Aggregation relationship which refer- o
ences from a Block (‘aggregate’) to another Block (‘component part'), thus cre-

ating one Shared Property, typed by the 'component part', in the 'aggregate’.

The aggregation value of the target end of a Directed Aggregation is 'shared'.

Composition [UML]:

A Composition is a special form of Aggregation which requires that a part of a o
Block instance be included in, at most, one composite object at a time. The

composite object is responsible for the creation and destruction of its parts. In | (F)
other words, a Composition specifies a 'strong' part-whole relationship from a

‘composite’ (whole / source) to a ‘composite part’ (target). Creating a Composi-

tion will also create a Part Property, typed by the ‘composite part’, in the ‘com-

posite’ and a Reference Property, typed by the ‘composite’, in the ‘composite

part’. The aggregation values of the target and source ends are 'composite' and

'none’, respectively.

Directed Composition [UML]:

A Directed Composition is a one-direction Composition relationship which ref- o
erences from a Block (‘composite') to another Block (‘composite part'), thus

creating one Part Property, typed by the ‘composite part', in the 'composite’.

The aggregation value of the target end of a Directed Composition is ‘compos-

ite'.

Generalization [UML]:

A Generalization is a taxonomic relationship between a more general classifier F
and a more specific one. Each instance of the specific classifier is also an indi-

rect instance of the general classifier. Thus, the specific classifier indirectly has |(G)

the features of the general classifier.

Usage [UML]:

A Usage is a dependency in which one element (the client) requires the pres- |
ence of another element (the supplier) for its correct functioning or implementa-
tion. (V)

[1] Stereotypes taken from the SYSMOD process: http://www.sysmod.de by Tim Weilkiens, OOSE

SysML Diagrams

5.1.3 SysML BDD Specific Features

SysML BDD specific features includes:
(i) Inserting a New SysML Property Using One of the Block Menus
(ii) Inserting a New SysML Diagram Using the Block Shortcut Menu
(iii) SysML-Style Compartments
(iv) Creating an Association Block
(v) Creating a SysML Internal Block Diagram Using the Smart Manipulator Button

(i) Inserting a New SysML Property Using One of the Block Menus

You can create a new SysML property from the:

(a) Block shortcut menu (Figure 14)
(b) Block Smart Manipulator menu (Figure 15 and 16)

(a) To create a new SysML property using the Block shortcut menu:

1. Right-click a block and select Insert New SysML Property from the shortcut menu (Figure 14).
2. Select a SysML property that will be created.
3. Enter the name of the newly-created property.

SysML Diagrams

zhlock:

+|Block

B Specification Enter
Symbal(s) Properties. . Alk+Enter
Mew Diagram b
Go Ta ¥
Refactor b
Select in Conkainment Tree Alk+E

Select in Struckure Tree

Select in Inheritance Tree

Skereotype ¢
Aukosize

Edit Compartment b
Presentation Oplions b
SysML Compartments ¢

Insert New Attribute

Insert New SysML Property b Yalue Property
Insert Mew Operakion Chel+Al+O Part Property CHAIEA
Insert Mew Signal Reception Crrl+alk+R Shared Property

Lis2ile LIEL) et Reference Property

Create Instance. ..

Conskraink Property

Flow Property

Figure 14 -- Shortcut Menu for Property and Operation Insertion

(b) To create a new SysML property using the Block Smart Manipulator menu, either:

1. Click the small orange circle on a Block. The sub-menu will open (Figure 15).

2. Select a property type, for example, Part Property.

or

1. Bring your pointer to a Block. The Smart Manipulator menu will open (Figure 16).

2. Select one of the very last six icons (yellow rectangle) on the menu to create a SysML property.
In order for those icons to be displayed on the menu, you must be in the ‘Expert’ mode.

SysML Diagrams

Part Property

Distributed Property
Reference Property
Shared Property
Walue Property

Constraink Property

BB EEE B E

Flawy Properky

Figure 15 -- Block Smart Manipulator | for
SysML Property

Figure 16 -- Block Smart Manipulator Il for
SysML Property

For further information on SysML properties, see the SysML Internal Block Diagrams (IBD) section.

You can also use the Block shortcut menu to create a new UML property or UML operation. For more informa-
tion see MagicDraw User Manual.

NOTE If you just create a new stereotype as a subtype of Block (e.g., CustomBlock), and use it
in your model (e.g., “C”). When clicking the small orange button, the block smartmanipu-
lator menu | (Figure 15) will not be displayed unless you save and restart your project
first.

bdd [Model] Data| Untitled U]]
zstereotypes s | zhlocks -xdur[r;a el
Block A — K/
[Class]

-igEncapsulated : Boolean [0..1] «

«CustomBlocks 4 ,‘*'F
c J Insert SyshiL F'mp-ertyl

El

zsterectypes -
CustomBlock ,'3
[Class] /'ﬂ
Iy

SysML Diagrams

(ii) Inserting a New SysML Diagram Using the Block Shortcut Menu

To create a SysML diagram to be owned by a Block:

1. Right-click a block and select New Diagram from the shortcut menu.
2. Select one of the diagrams in the expanded sub-menu (Figure 17).

hlock: specification Enter
Block
= Syrnbolis) Properties, .. Alt+Enker

- | Mews Diagram Pl £ SysML Internal Block Diagram
Go Ta b SwsML Parametric Diagram
Refactor] @ SysML Ackivity Diagram
Select in Containment Tree AlL+B 5] SysML State Machine Diagram
Select in Structure Tree @ SysML Sequence Diagram
Select in Inheritance Tree @ SysML Block Definition Diagram

Related Elements]
Tools]
Stereotype b
Autosize

Edit Campartment b
Presentation Cpkions b

Figure 17 -- Inserting SysML Diagram from the Shortcut Menu

(iii) SysML-Style Compartments

SysML specifications allow Blocks to have multiple compartments. SysML plugin provides five independent,
collpasible block compartments, i.e. ‘parts’, ‘references’, ‘values’, ‘constraints’ and ‘properties’ compartments
(Figure 18).

SysML Diagrams

<blocks hlocks
AutomotiveDomain PowerSubsystem
e ; . corvshRiE
drivingConditions : Environment =t
HSLW : HybricdSLW parts
vehicleCargo | Bagoage acl . Accelerator
: bp : BatteryPack
. pmperies hus : CAN_Bus
oriver . Driver dif - Differartial
mairtainer ..Malntalner eth ; Electrichotorzenerator{allocatedFrom = a4}
passenger : Passenger epc : ElectricalPowerController{allocstedFrom = a3}

ft . FuelTank&zzembly
fuel=upply : Fuel

gl : Torgue
ke i1 : ElectricCurrent
FuelTankAssembly i2 : ElectricCurrent
parts ice : ImternalCombustionEngine{sllocatedFrom = a2}
fip . FuelPumgp peu . PowerCortrolUnit{allocatedFrom = a1 }
fuelReturn : Fuel{direction = out } 11 : Torgue

fuelSupply © Fuelireadonly direction = in} 12 Torgue
trath - Transmission

efemmes
. Fuel referenmes
bkp . BrakePedal [1]
| vales fuelReturn ; Fuel
e ote ledl ifu : Fromtitheel [1]
WIS s =t riwe : Frontvvheel [1]

wheslHubAzsy WheslHubLssembly [2]

i

Figure 18 -- SysML Block Compartments

Table 1 -- SysML Block Compartments

SysML Displayed Elements
Compartments
parts Part Properties: properties which are typed by Blocks or subtypes of Block,

except Constraint Block, having ‘composite’ aggregation kind.

references Shared Properties and Reference Properties: properties which are typed by
Blocks or subtypes of Block, except Constraint Block, having ‘shared’ and
‘none’ aggregation kind, respectively.

values Value Properties: properties which are typed by Value Types or subtypes of
Value Type, always having ‘composite’ aggregation kind.

constraints Constraints and Constraint Properties. Constraint Properties: properties which
are typed by Constraint Blocks, or subtypes of Constraint Block, always hav-
ing ‘composite’ aggregation kind.

properties All other properties which cannot be classified into the previous compart-
ments.

In addition, three SysML compartments are provided for displaying the Constraint Blocks’ properties, i.e. ‘con-
straints’, ‘others’ and ‘parameters’ compartments (Figure 19).

SysML Diagrams

goanstraints
PowerEquation

corsaint s
ftp=twehlproer-(Cd* e)-0O T e *y)

pamneters
swehlpr - Horsepeerjunit = bpt
i: Real
cd : Real
Cf : Real
T D Weight{unit = |k}
tp : Horzepwwriunit = hp}
v o Welunit = mph}

Figure 19 -- SysML Constraint Block Compartments

Table 2 -- SysML Constraint Block Compartments

SysML Displayed Elements
Compartments

Constraints and Constraint Properties. Constraint Properties: properties which
are typed by Constraint Blocks, or subtypes of Constraint Block, always hav-

ing ‘composite’ aggregation kind.

All other properties which cannot be classified into the previous compart-
ments.

Constraint Parameters (reusing the ‘ports’ compartment of Class).

constraints

others
parameters

To suppress or expand SysML Block / Contraint Block compartment(s) of a Block / Constraint Block :

1. Right-click on the Block / Constraint Block symbol, and select SysML Compartments group.
2. To suppress or expand all SysML compartments at once, you can click on Suppress All or

Expand All, respectively.

3. You can suppress or expand single SysML compartment by check or uncheck, respectively, the
context menu item whose label is starting with “Suppress”, followed by the compartment name
(e.g. Suppress Parts for suppress/expand the ‘parts’ compartment (Figure 20)).

SysML Diagrams

Specification Enker
Symbol{s) Properties. .. Alt+Enter
Mew Diagram]
Go Ta k
Refactar [
Select in Containrment Tree Alt+B

Select in Struckure Tree

Select in Inheritance Tree

Related Elerments b
Skereotyvpe]
Edit Caompartment]
Presentation Cptions]
SysML Compartments] Expand Al

Suppress All
Insert Mew Attribute Suppress Constrainks
Insert Mew SwsML Property r Suppress Parts
Insert Mew Operation Ctrl+alk+C ||+ | Suppress Properties
Insert Mew Signal Reception Chrl+Al+R Suppress References
Insert Mew Port Suppress Yalues

Create Instance. ..
-

Figure 20 -- Context menu for suppression/expansion of SysML compartments

NOTE

e Each expanded compartment will be shown when it contains at least one properties. If
the compartment contains no property, it will not be displayed even already expanded.

e The ‘parameters’ compartment of each Constraint Block re-uses the ‘ports’
compartment of Class. Consequently, you can suppress or expand the ‘parameters’
compartment by using the symbol property for suppress ‘ports’ compartment.

(iv) Creating an Association Block

To create an Association Block on a Block Definition Diagram, either:

1. Select Association Block on the diagram toolbar (Figure 21).
2. Select a Block on the diagram to be used as the source of the Association Block to be created.

3. To select the target of the Association Block, either select an existing Block on the diagram to
be used, or click on empty space on the diagram to create such target Block.

4. An Association Block will then be created between the source and target Blocks.

or

SysML Diagrams

1. Select the Association Block icon in the Smart Manipulator menu of a Block to be used as
the source of the Association Block (Figure 22).

2. To select the target of the Association Block, either select another Block or click on an empty
space on the diagram to create such a target Block.

3. An Association Block will then be created between the source and target Blocks.

@ Black Definition Diag. ..

E Block.

E Structured Block
Conskraint Block,

g Damain ¥

.-"EI

[] Yalue Tvpe r A

[e] Enurner akion ;

Signal

[=] Instance i

— Inkerface /

g Flaw Specification

]:l Port hd %

sf Interface Realiz... - ,,
L~ Link :;
|é Assaciation Block 2

A Directed Associa,.,., = -

o Directed Agareq... =

.7' Directed Compo.,., = Ce

A1 Gemeralization v

,{,‘ Isage * Figure 22 -- Block Smart Manipulator to Create

an Association Block
Figure 21 -- Association Block Button in BDD

Diagram Toolbar
(v) Creating a SysML Internal Block Diagram Using the Smart Manipulator Button

To create a SysML Internal Block diagram for a Block:

1. Select the Block symbol. The smart manipulator menu will appear (Figure 23).
- 2. Click the SysML Internal Block diagram button. The SysML Internal Block diagram wiill
™l then be created to be owned by the selected block.

3. The name of created SysML Internal Block diagram will be the same as the owner
block. The hyperlink to the created diagram will be added to the selected block.

SysML Diagrams

ul]]]i"\\"\.l\aé*s'

LY LY LY
&y & b
oA —Hal A -

b

Bl B B EREHE

1 SyshL Internal Elock Diagram |

Figure 23 -- Smart Manipulator Menu for Creating IBD

5.1.4 Creating Instances of Blocks with Complex Structure

Creating instances for a complex model can be quite difficult, especially, since instances are frequently used in
SysML (unlike in UML), in particular when assembling systems. Starting with version 16.5, a new feature has
been included: Automatic Instantiation.

The purpose of this feature is to provide a wizard for automatic instantiation of the composite structures of a
system or system parts. Instances are widely used in simulation environments, for example, Paramagic, and
also for defining different system configurations and test cases.

The following two samples will describe how to use the Automatic Instantiation feature.

(i) To automatically instantiate a Block:

1. Right-click a Block and select Create Instance... on the shortcut menu (Figure 24). The Auto-
matic Instantiation Wizard dialog will open (Figure 25). Note that SysML sample projects are
available in the <md.install.dir>/samples/SysML directory. The hybrid sport utility vehi-
cle.mdzip sample is used to demonstrate how this feature works.

SysML Diagrams

29

ICEFuelFitting : FuelFlow <
H -
shlocks Specification Enter
= R e s i mEnRinE Symbol{s) Properties. .. Alk+Enker
i - Fuelinjectar [4]
il . Fuelinjectar MNews Diagram bk
fi2 : Fuelinjector
i3 . Fuellnjectar o Ta bk
fid : Fuelinjector
1t : FuelRegulator Refactor ’
ft : FuelTank&zsembly . .
iceEfficiency © Resl Select in Conkainment Tree Alk+E
fra : FuelRail{allocatedFrom = fdist} Select in Skruchure Tree
aFawPmpe ity
fuelReturn : FuelreadOnly direction =in} : .
IR sl chrection = out) Select in Inberitance Tree
= Related Elerments 3
#Flowe Specification: Tools »
FuelFlow Stereoktype]
aFkawPmperte
fuelReturn : FuelireadCnly direction =in} Autosize
fuelSuplly : FuelreadOnly direction = out
Edit Compartrnent b
Insert Mew Pork
Create Instance, ..

Figure 24 -- Create Instance... Shortcut Menu

E Automatic Instantiation Wizard

]

HEHEETHEHEETEHHEH

-fil
fiz
-fig:
-fi4 :
+fp:
+fr:
fra:

+ft:

HEYModel: H3UY Strockure
H5UWModel: HSUY Struckure
HaLMadel: HILY Struckure
HaLyMadel: :HSLY Struckure

HaLModel:

H3LMadel:

H3LY 3tructure
HEYModel: H3UY Strockure
H3LY Skructure
HaUYMadel: :HIY Struckure

B[] & InternalCombustionEngine [H3UYMadel: :HSUY Skruckure]
-] Jp +ertl [H3UWModel: :H3UY Structure:: InternalCombustionEngine]

8 -fi : H3UYMadel HSUY Structure: :Fuellnjector [4] [HSUYModel: iHSUY Struckure:: Inter
iFuellnjector [HILWModel: HSUWY Skrockure:: Inkerna
1Fuelnjeckar [HIUWModel:: HSLY Steucture: Interna
nFuellnjector [HIUModel: HSUWY Skeuckure: Inkerna
Fuellnjector [HIUWModel: HSUWY Skruckure: Inkerna
1iHAUY Inkerfaces;:F9_ICE [H3UWModel :HSUY Struc
1iFuelRegulator [HIUYModel: :HIUY Struckure:: Inkerr
1FuelRail [HSUWModel: HSIY Skruckure:: InternalCon

1 FuelTankassembly [HIUWMadel :HSUY Skructure: I
+fuelFitting s HIYModel: sHSUY Skructure: :Fuel [HSUYModel sHISUY Structure:Inkerns
+fuelReturn : HSUWModel: :H3UY Structure: :Fuel [H3UWModel: :HSUY Skructure: :Intern.
+fuelSupply - H3UYModel :H3LY Strockure: sFuel [H3UYModel: :HSUY Skruckure: : Inkerne—
+iceEfficiency | SywsML Profile::Blocks: :Real [H3UYMadel: H3WY Strockure: InkernaliConm
B +ICEFuelFitting : HSYMadel HSUY Structure: HSUY Inkerfaces:: FuelFlow [HSLVMode hd

|2

>

®
() 2. Select a package
Bt
B
Select part(s) | property(s) ko -
be instantiated. You can -
change type of the selecked
part {to another subkype) B
using the drop-down lisk bos
below the tree, A part with an
abstract bype cannot be &[]
selected, unless changing its -
type to one of the subkype of [
the abstract bype, Default &[]
walues, if existed, will be B
used; new instance will not be .
created for a part with B
default value, o
(press SHIFT and click ko
select recursively)
<
Type
Walue

’ Mext = H Finish ” Cancel H Help

Figure 25 -- Automatic Instantiation Wizard - Step 1.Select Parts

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

NOTE

The Automatic Instantiation Wizard dialog contains three steps: (i) Select parts, (ii)
Select a package, and (iii) Select a diagram (Figure 25).

30

2. In Step 1 (Select parts), select a check box in front of a property to assign the value of the slot
representing the property with instance specifications or values. In other words, if the property
has no default value and has a type assigned, an instance specification of the assigned type will
be created and assigned as the value of the slot representing the property.

3. The slot for the property with multiplicity greater than 1 ([0..*], [4], [1..5]), can contain more than
one instance value. You can add more instance values to the slot of this property by right-click-
ing the property and select Add parallel part (Figure 26). A new node with the index of the
instance value to be created will be listed under the selected property. You can also remove the
instance value by right-clicking the node of the instance value and select Remove parallel part

(Figure 27).

E Automatic Instantiation Wizard

(*) 1. Select parts

() 2. Select a package

Select part(s) | property(s) ko
be instantiated, You can
change type of the selected
part (ko another subkype)
using the drop-down list bos
below the bree, & part with an
abstract type cannot be
selected, unless changing its
type to one of the subtype of
the abstract bype, Defaulk
values, if existed, will be
used; new instance will not be
created for a part with
default value,

({press SHIFT and click ko
select recursively)

El- [¢] & InternalCombustionEngine [HSUYMadel: :HILY Struckure] »
> [] I +crtl [HSUMadel: :HSLY Structure:: InternalCombustionEngine]
' wal £ : HSLIWMode]: sHELY ¢

OO o OO e OO s

e OO OO e OO s

3 [[1]
12
[[3]
[141

- [#] o= it
[o= iz
- [¥] O -fi3
-[w] @ fi4:

B +p:
] @ +fr:
-[w] OB fra:
] @+t
O F

HEUYMode!::
HaLyYMadel::
HaUyYMadel::
HalWrodel:
H3LNModel:
HEUYMode!::

Skruckure::

HILW Skruckure

HaIY Struckure: :FuelInjector [H3UWMadel: :HSUY Structure::Interna
HaIY Struckure: ;FuelInjector [HSUWMadel; :HSUY Structure:Interna
HSIY Structure: :FuelInjector [H3UWModel: :HSUY Structure: Interna
H3UY Skructure
H3LW Struckure: :FuslRequlatar [HSUWModel: HSIY Skruckure:: Interr

HSIWMadel: HSUY Skructure

HsUYModel::

HaIY Structure: FuelTankassembly [HIYModel s HILW Skructure I
+fuelFitting : HSUYModel: :HSUY Structure: :Fuel [HSUYModel: :HSUY Structure: :Internz v
| >

Fuellniector [4..%] [Ho e
add parallel part

1Fuelnjectar [HELWModel: HSUW Structure: Interna

1 HSUY Inkerfaces: :F3_ICE [HSIWMaodel: HSUY Skruc B

1Fuelrail [H3UWModel: :HSIY Struckure:: InternalCon

Type
Value

E FuelInjector [HILVMade!: HSUY Skeucture]

[

Mext =][Finish][Cancel][Help

Figure 26 -- Adding More Instance Values

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

31

E Automatic Instantiation Wizard

(#) 1. Select parts

() 2. 5elect a package

Select part(s) | property(s) ko
be instantiated. You can
change type of the selected
part {to another subkype)
using the drop-down list box
below the tree, & part with an
abstract type cannot be
selected, unless changing its
type to one of the subtype of
the abstract type, Default
values, if existed, will be
used; new instance will nok be
created for a part with
default value,

{press SHIFT and click to
seleck recursively)

B [+] & InternalCombustionEngine [H3UYModel: :HSLY Skruckure] L
> O T2 +crtl [HSWMadel: :HSLY Structure:: InternalCombustionEngine]
E} B -fi : H3WModel i HSIY Structure: :FuelInjector [4,.%] [HSUWModel: :HSUY Skructure::Inl
13- [[1]
(2]
3]
[4]

Remove parallel part
T 1iBlocks: ;Real [HIYModel: sHSUY Struckure: :Fuell

B[] 7 +unnamed? : HSLYModel::HSUY Structure: :Fusl [HSUYModel::HSLY Struckure: _
1Fuelnjectar [HIUWModel:: HSUY Structure: Interna
1Fuelnjectar [HELWModel: HSUW Structure: Interna
Fuellnjector [HIUYWModel: HSUY Strackure: Inkerna
iFuellnjector [HIUYModel: HSUY Skruckure:: Inkerna
H3NModel: :HSUY Structure: i HSUY Inkerfaces: :FS_ICE [HSIWModel: (HSUY Skruc
H3LModel: :H3UY Struckure: :FuslRequlatar [HSUWModel: (HSIUY Skruckure:: Inkerr b

..|_—L|

e SO OO s OO s |

-fil
-fiz 1

i3

+fp:
+fr

HEYModel: H3UY Strockure
HEYPodel: H3UY Skrockure

 HSUYModel: :HSUY Struckure
-fig

HsUYMadel: ;HSUY Struckure

»

Type
Value

E Fuelinjector [HILVMadel HSUY Skructure]

[Mext =][Finish][Cancel][Help]

Figure 27 -- Removing Instance Value

4. You can change the instance specification type to be created for any selected property by
changing the Type property in the Instantiated properties table. Generally, the possible classifi-
ers are subtypes of the type of that particular property, unless the type is an Interface. If the type
is an Interface, the options in the drop-down list will be elements which realize the Interface

(Figure 28).

Copyright © 2006-2011 No Magic, Inc.

SysML

Diagrams

E Automatic Instantiation Wizard

(%) 1. Select parts
() 2. Select a package

3. Select a diagram

Select part(s) | property(s) ko
be instantiated. You can
change type of the selected
part {to another subkype)
using the drop-down lisk bos
below the tree, A part with an
abstract type cannot be
selected, unless changing its
type to one of the subkype of
the abstract bype, Default
walues, if existed, will be
used; new instance will not be
created For a part with
default value,

(press SHIFT and click ko
select recursively)

B [+] & InternalCombustionEngine [H3UYMadel: :HSUY Skruckure] ~
- [Jp +ertl [HSUYModel: :HSUY Structure:: InternalCombustionEngine]

8 -fi : H3WModel: HSUY Structure: :Fuellnjector [4] [H3UYModel iHSUY Structure:: Inter
HSLW Skruckure:
H3LY Skruckure:
H3LY Struckure:
H3LY Struckure:
HEUY Structure
HSLW Skruckure:
HSUW Structure
H3LW Struckure:

e O e OO s RO e OO
EEEEA

-
t
}..
-
-

e OO e OO e OO e OO s OOV s

REEOOEDO

THEETHEHEECTHEHHEHBEH

-fit + H3UYModel::
-fiz + HSLYMadel::
-fig 1 H3UYModel::
-fi4 1 HSUYModel::
+fp : HSIYModel:
+fr : H3UYModel::
-fra : H3LWModel:
+Ft 1 HSUYMaodel::

| T CC amICikkim

+fuelFitting ; HIWModel: HIUY Structure: :Fuel [HSUYModel: sH3UW Structure s Inkerns
+fuelReturn : HSUWModel: :HSUY Structure: :Fuel [H3UWModel: :HSUY Structure: Inbern.
+fuelSupply @ H3UYModel :H3LY Struckure: (Fuel [H3UWModel: :HSUY Struckure: : Inkern:
+iceEfficie

P Ly RTY RO PN Y [y [TR TP PRI B [y [(W PN NN

‘Fuellnjector [H3LWModel: :HSUY Structure: Interna
‘Fuellnjeckor [HSUYModel i HIUY Structure: Interna
‘Fuellnjectar [H3UWMadel HSUY Structure: Interna
‘Fuellnjectar [HSUYMadel i HSUY Structure: Interna
1HAUW Inkerfaces::FS_ICE [H3UWModel: :HSUY Struc
‘FuelRegulator [HIUWModel: :HSUY Skruckure: : Tnkerr
1Fuelrail [HEUWModel: HSIY Struckure:: InternalCon
‘FuelTankassembly [HIYModel :HILW Skructure I

v
e Ennmd e TS R~

Yalue

< Back

O Press [ModelingDomain: Automaotive Yalue T/ [

@ Temp [MaodelingDomain: ; Automotive Value T =

@ Time [MndelingDnmain::.ﬂ.ut Yalue T
M Mal TMad=linainmsin: dnkamabive el e T o

Figure 28 -- Selecting Type to Instantiate

NOTE

that property.

You cannot select any property typed by an Abstract Class or an Interface. You must first
use the drop-down list to change the type of the instance specification to be created for

32

5. For any selected property, you can also directly assign the value to the slot by using Value
property in the Instantiated properties table. For the value properties, you can type the value
into table directly (Figure 29). For the complex structure, you can selected the existing instance
specification to be the instance value. Moreover, any value specification can be created and
assigned to be slot value of selected property by right click on the cell Value in the table then the
context menu for edit, delete and create a various type of value specification will be popped up

(Figure 30).

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

33

E Automatic Instantiation Wizard

(%) 1. Select parts
() 2. Select a package

3. Select a diagram

Select part(s) | property(s) ko
be instantiated. You can
change type of the selected
part {to another subkype)
using the drop-down lisk bos
below the tree, A part with an
abstract type cannot be
selected, unless changing its
type to one of the subkype of
the abstract bype, Default
walues, if existed, will be
used; new instance will not be
created For a part with
default value,

(press SHIFT and click ko
select recursively)

S

B [+] & InternalCombustionEngine [H3UYMadel: :HSUY Skruckure] ~
- [Jp +ertl [HSUYModel: :HSUY Structure:: InternalCombustionEngine]
[B -fi : H3YModel s H3Y Structure: sFuelInjector [4] [H3UYModel:: HSUY Strocture:: Inter
G} A -fil : H3UWModel: :HSUY Struckure: :Fuellnjector [H3UWModel: :HSUY Structure:: Interna
B~ B -fiz : HSUYMadel: H3UY Strockure: Fuellnjeckor [H3WWModel: :HIUY Structure: Interna
E2 3 B -fi3 : H3YModel: :HIY Struckure::FuelInjector [HSUModel: : HSUY Structure::Inkerna
[B -fi4 : H3YModel: :HIY Struckure: :FuelInjector [HSUYModel: HSUY Structure::Inkerna
b +fp : HaUYMadel: :HSUY Structure: :HSUY Inkerfaces::FS_ICE [HSUWModel: :HSUY Skruc
B [@ +fr : H5UYMadel:: HSLY Structure::FuelRegulator [HSUWModel::HSUY Structure: :Inkerr
B3~ CE -fra : HSUYMaodel: :HSUY Structure: FuelRail [H3UYMaodel: :HILY Struckure: InternalCon
B [08 +Ft : HSUYMadel: HSUY Struckure: FuelTankassembly [HSUWMadel: :HSUY Structure::Ir
B[] T +fuelFitting : HSUYModel: ;H3LY Structure: :Fuel [HSLYMadel; :HSUY Structure::Inkerns
B CE +fuelReturn : HSUWModel: :HSUW Structure: :Fuel [HSUWModel: :HSUY Structure: Inkerm.
G- [E +fuelSupply : HSUYMadel: :HSUY Skruckure: :Fuel [HSUWMadel: :HSUY Skruckure::Inkern:
-7 o :
P +ICEFuelFitting : HSLYModel HSLY Struckure: HSUY Interfaces:: FuelFlow [HILYMade
< | >
Type @ Real [SysML Prafile; :Blocks]

(1)

< Back [Mext =][Finish][Cancel][Help

]

m Automatic Instantiation Wizard

(%) 1. Select parts
(") 2. Select a package

3. Select a diagram

Select partis) | property(s) to
be instantisked, You can
change type of the selected
part {to another subtype)
using the drop-down lisk box
below the tree. & part with an
abstract type cannot be
selected, unless changing its
type to one of the subtype of
the abstract type, Default
walues, if existed, will be
used; new instance will not be
created for a part with
default value,

({press SHIFT and click to
select recursively)

Figure 29 -- Assigning Value Property

O i OO IO s DO s

th
H
-
H
a3

Firs IO i OO i OO e OO e OO s

E- [#] & InternalCombustionEngine [HEUYMadel: HSUY Struckure] ~
-] 1 +ertl [HSUYMadel: :HSUY Structure:: InternalCombustionEnging]

A -fi : H3UYModel:: HSUY Structure: :Fuellnjector [4] [H3UYModel: :HSUY Struckure: :Inken

- [v] 0B -fil
e -fiz:
-] @ fi3:
.

+ H3UWModel: :HSUY Structure: :FuelInjector [HSUWModel: :HSILY Structure:: Interna

HSUYMadel: :HSUY Structure: :Fuellnjector [HSUYMadel: :HSUY Structure:: Interna

HSUYModel: :HSUY Skructure:

:Fuellnjector [HSYModel: HSUY Skructures: Interna

Delete Literal String

B +Fp ¢ HSUYMadel: tHSUY Struckure: :HSUY Interfaces::FS_ICE [H
[& +fr : H3UWMadel: :HSUY Struckure: :FuslRegulatar [HSUYMadel: | Durakion
- [W] 8 -fra : HSUYModel: :HSUY Skrocture:: FuelRail [HSUYModel: :HSY Duration Interval
] & +Ft : H3UWModel: :HSUY Structure: :FuelTankassembly [HSLWMo Element Value

[I +fuslFitting : HSUYMadel: :HSUY Structure: :Fuel [HSUYMadel: H
- CE +fuelReturn @ HSUYModel HSUY Struckure: :Fuel [HSUYModel:
- CE +FuelSupply : HSLWMadel HSLY Skruckure: i Fuel [HSIYModel: H
[+iceEfficiency : SysML Profile: :Blocks: :Real [H3UYMadel: i HILY
B +ICEFuelFitting : HSUYModel: :HSUY Skructure: HSUY Interface

Expression
Instance Yalue
Literal Boolean
Literal Integer
Literal full

| Literal String

FEEENOORDIDIR x

Literal Unlimited Makural
B Fuellnjector [HSLWMa

{1 Opanque Expression
Edit Yalug Time Expressian
< Back | value Specification b | L] Time Interval

T |

Figure 30 -- Changing Value Specificaotion Type for Slot Value

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

6. Click Next to proceed to the next step once all the required properties have been selected

7.In step 2 (Select a package), either select an existing package or create a new package to be

used to hold instance specifications, which will be created after you click the Finish button.
Click Next.

e To select an existing package, click on the package.

e To create a new package, select the package owner in the tree and click the Create
button. A list of packages will open. Choose a package (Package, Profile, or
Model) from that list. A package will be created and its specification dialog will open
for you to customize, for example, assigning the package name (Figure 31).

E Automatic Instantiation Wizard El
() 1. Select parts E@ Data

-3 HaUvModel

-5 Explanations

() 3.5elect adiagram | | | 7 3 HUY Analysis

1T HSUW Behavior
H-C] H3UW Requwements

(%) 2. Select a package

Select a package to hold
instance specification(s) to be
created,

-5 HSLI\-' LIseCases

H-C] HSUW Yiewws

{71 ModelingTips

B3 Sterectypes

----- £ SysML 1.1 Specification texts

ey WO s OO g O s B

[ModelingDomain

Create
3 Package

Profile g[Mext =][Finish][Cancel][Help
E Model

Figure 31 -- Automatic Instantiation Wizard - Step 2.Select a package

For example, to create the package named "ICE Type A” owned by HSUV Structure; you need
to:

e Select the HSUV Structure package in the tree and click the Create button. A list of
packages will open.

e Choose a package from the list. The package specification dialog will open.

e Type: ICE Type A in the name attribute and click the Close button. The ICE Type A
package will be available in the tree.

e Select the package and click the Next button to proceed to Step 3 (Figure 32).

SysML Diagrams

X

E Automatic Instantiation Wizard

() 1. Select parts E-f51 Data -
EF-E3 HaUWMadel
() 2. Select a package 511 Explanations
() 3.5elect adiagram | | | [£ HSUY Analysis
B HSUY Behavior
Select a package to hold &[0 HSUY Requirsments
instance specification(s) ko be EID HSLWY Structure
created, &) HSUW Inkerfaces
- HAUY UseCases
B HSUW Wiews
-] ModelingTips
[Stereotypes 1
----- 7 SysML 1.1 Specification texts
----- £ Test =z
Create Clone
[< Back] [Mext =] [Finish] [Cancel] [Help

Figure 32 -- Automatic Instantiation Wizard - Step 2.Select a Package

E Automatic Instantiation Wizard

Create a new diagram
() 1. Select parts

[] Create link between instances
(1 2. Select a package

(+) 3. Select a diagram Type diagram name:

|Instance of the InternalCombustionEngine |

Check the "Create a new

diagram” checkbox if wou Select diagram type:

wank ko create a new |S~;.r'sML Elock. Definition Diagram w |
diagram to display
instance specification(s). Select owner for diagram:
Check the "Create link - S SULCEES A
hetween instances" B-00 HSUY UseCases
checkbao if vau also want B0 HALW Wiews
to display link{s) among | | @ - £ ModelingTips
those instance -] Sterectypes 1
specfication(s). || 1 . £ SysML 1.1 Specification texts

[~ Test

[H-E7 Wheel w

[Create Qwner] [Clone]

[Finish H Cancel][Help l

Figure 33 -- Automatic Instantiation Wizard - Step 3.Select a Diagram

8. In Step 3 (Select a diagram), select the Create shape on new diagram check box to create a
new diagram to display instance specifications (Figure 33).

NOTE Select the Create link between instances check box to also create links among
instances.

9. Type the diagram name and select the type (only static diagrams are allowed to hold instance
specifications), and owner (select one from the tree).

10. Click Finish to create the instance specifications and diagram (Figure 33). The Instance spec-
ifications will be created and displayed in the chosen diagram (Figure 34).

35 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

bdd [Package] ICE Type A[@ Instance of the InternalCombustionEngine]J
==hlock=»= E
HSUW.internalCombustionEngine : InternalCombustionEngine
fi= HSLLinternalCombustionEngine fif1], HEW.internalComhbustionEngine fi[2],
HSLULinternalCombustionEngine.fif3], HSW.internalCombustionEngine fi[4]
fi1 = HSLLinternalComhbustionEngine fi1
fi2 = HSUW.internalComhbustionEngine.fi2
fid = HEUinternalComhbustionEngine fid
fid = HEULinternalComhustionEngine. fid
fra = HELLinternalCombustionEngine fra
fuelReturn = HSLinternalCombustionEngine. fuelReturn
fuelSupply = HSLLinternalCombustionEngine fuelSupply
iceEfficiency=""
==hlocks== = ==hlocks== i ==hlock== =
HSU. HSU. HSLL
internalCombustionEng internalCombustionEng internalCom
ine.fuelReturn : Fuel ine.fuelSu : Fuel bustionEngi
ne.fi:
fuelPressure =" fuelPressure ="" Fuellnjector
pressure = "{unit= psi, pressure = "unit= psi, _
ditnension = Pressure} dimension = Pressure} TueiDistiieliee
termperature =""{unit = °F, temperature = "{unit="F,
dimension = Temperature} dimension = Temperature}
==hlock=»> ==hlock=»> ==hlock=»> ==hlock=»>
HSU. HSU. HSU. HSU.
internalCom internalCom internalCom internalCom
bustionEngi bustionEngi bustionEngi bustionEngi
ne.fi2 : ne.fid: ne.fid: ne.fi1]:
Fuellnjector Fuellnjector Fuellnjector Fuellnjector
fuelDemand =" fuelDemand =" fuelDemand =" fuelDemand ="
==hlock=> = | ==hlock=> = | ==hlock=> = ==klack~> =
HSU. HSU. HSU. A ﬁ]‘c
internalCom internalCom internalCom W
nefif2] : nefif3]: nefil4] : II:E.TE;I
Fuellnjector Fuellnjector Fuellnjector gLElalT
fuglDemand =™ fuglDemand =™ fuglDemand =™

Figure 34 -- Example of Instance Created by Automatic Instantiation Wizard

11. You can reassign some values, for example, if you like to use “SuperFuel” for “fuelReturn”
instead, then reassign the fuelReturn slot in the HSU.internalCombustionEngine : Internal-
CombustionEngine instance specification (Figure 34) to SuperFuel, a Fuel kind with a specific
fuelPressure (Figure 35). The newly-created diagram will look like the one in Figure 36.

SysML Diagrams

37

=

[N Instance Specification - HSU.internalCombustionEngine

E% B @e « =

Hiskary :| = H3U.internalCombustionEngine : H3UWModel: :HSUY Skruckure: :Internal. .. v|

=1 H3U.internalZombustionEngine : HIL
[-EY| DocumentationHyperlinks
- Usage in Diagrams

~Sloks

Deployed Artifacts

Inner Elements
R.elations

Tags
Conskrainks

2= InternalCombustionEngine

o=

-2} fi = HSW.internalCombustionEngin
- 12 fil = HSW.internalCombustionEngi
-2} fi2 = HSW.internalCombustionEngi
-2 i3 = HSW.internalCombustionEngi
- i) fi4 = HSULinternalCombustionEngi
-1 fp: F5_ICE

Property:

fuelReturn : Fuel

| S

Walue

E Select Elements

-8 Fr: FuelR.equlator
-2 Fra = HSLLinternalCombustionEng
-8 ft : FuelTankassembly
-1 FuelFitting : Fuel
el iclFeturn : Fuel

"EI
B-E]

(|

=~ HSUW Struckure

HSY Interfaces
ICE Type A

-[=1 H3l.internalC
- [=1 HSU,inkernalC
=1 H3LLinternal
- [=1 H3ULinternalC
- [=1 H5ULinkernalC
- [=1 HSU,internalC
- [=1 H3LLinternalC
- [=1 H3ULinternalC
- [=1 H5ULinkernalC
- [=1 HSU,internalC
- [=1 H3LLinternalC
- [=1 H3ULinternalC

SuperFuel | H
Accelerator

s

Create

Clone

Add
Add all
Add Recursively

Remove

Remaove Al

Selected objects:

| ¥

Cancel

Figure 35 -- Changing Slot Value of “fuelReturn” Property

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

bdd [Package] ICE Type A[@ Instance of the InternalCombustionEngine]J

==block==

HsWinternalCombustionEngine : InternalCombustionEngine

fi= HEW.internalCombustionEngine fif1], HSW.internalCombustionEngine fif2],
HSLULinternalComhustionEngine fi[3], HSW.internalCombustionEngine fi[4]
fi1 = HEinternalComhbustionEngine fi1

fiz = HSLLinternalCombustionEngine fi2
fid = H3LLinternalTombustionEngine fi3
fid = HEULinternalComhustionEngine. fid
fra = HELlinternalCombustionEngine fra

EueIReturn = SuEerFueI|
fuelSupply = HEWinternalCombustionEngine fuelSupply

iceEfficiency=""
==hlock== = ==hlocks== | ==hlock== =
HSU. HSU. _ Hsu.
internalCombustionEng internalCombustionEn internalCom
ine.fuelReturn : Fuel ine.fuelSu, : Fuel bustionEngi
ne.fil :
fuelPressure =" fuelPressure ="" Fuellnjector
pressure = "{unit= psi, pressure = "unit = psi, _
ditnension = Pressure} dimension = Pressure} TueiDistiieliee
temperature =""{unit = °F, temperature = "{unit="F, e
dimension = Ternperature} | | dimension = Temperature} -
SuperFuel : Fuel
fuelPressure ="30"
==hlock=»> ==hlock=»> ==hlock=»> ==hlock=»>

HSW. HSW. HSW. HSW.

internalCom internalCom internalCom internalCom
bustionEngi bustionEngi bustionEngi bustionEngi
ne.fi2 : ne.fid: ne.fid: ne.fif1] :
Fuelinjector Fuelinjector Fuelinjector Fuelinjector
fuelDemand =" fuelDemand =" fuelDemand =" fuelDemand ="
==hlock== ==hlock== ==hlock== ==klack~> =
= = = HSL.

HSL. HSL. HSL. int e
internalCom internalCom internalCom W
bustionEngi bustionEngi bustionEngi w

ne.fif2] : ne.fif3] : nefif4] : ;'E' Irli:a:l
Fuelinjector Fuelinjector Fuelinjector e
fuelDemand =" fuelDemand =" fuelDemand ="

Figure 36 -- Resulting Instances After Changing Slot Value of “fuelReturn” Property

(i) To automatically instantiate a Block to be used with Paramagic Plugin:

1. Right-click a block and select Create Instance... on the shortcut menu (Figure 37). The Auto-
matic Instantiation Wizard dialog will open (Figure 38). Note that Paramagic sample projects
are available in the <md.install.dir>/samples/ParaMagic directory after you installed
Paramagic Plugin. The Satellite.mdzip sample is used to demonstrate how this feature works.

SysML Diagrams

age] Satelite | @smeimeamu

.
. ==hlock==
SatelliteSystem
- vales
eight : Real
cofstaits
. Jwveightt : WieightBalance
powver] : PowwerBalance
uid = = = = - =
: +Pr£1: +in!1 : +Ca!w1 3 +st'¢'1 :
==hlock== ==hlock== ==hlock== ==hlock==
Propulsion Instruments Control PowerSystem
. vakms vk s vales vales
. |Ppro: Real Finz : Real Pcon : Real . |Powwer : Real
1 |Vspro : Real _ |Winz : Real [Wizon : Real © o [Whsy Real
. * ==constraint== ==constraint==
: PowerBalance : WeightBalance
: p=pl +p2+p3} 0 . v =l + w2+ w3+ owed
paraeters pammmeters
-+ B Real - |w : Real
©|p1: Real wl : Real
©|p2: Real W Real
- |p3; Real - w3 Real
. wwd © Real

2.In Step 1 (Select parts), select the required properties as shown in Figure 38 and set the value

Specification Enter
Symbol{s) Properties. ., Alt+Enter
Mew Diagram]
Go To ¥
Refackor]
Select in Containment Tree Alt+E
Select in Inheritance Tree

Related Elements]
Tools »
Stereotype]
Autosize

Edit Compartment »
Presentation Options]
Insert Mew UML Property

Insert Mew SysML Property]
Insert Mew Operation Chrl-al+0

Create Instance. ..

Figure 37 -- Create Instance... Shortcut Menu

for each value property of the instantiate classifier. Click Next.

SysML Diagrams

40

m Automatic Instantiation Wizard

(%) 1. Select parts
() 2. Select a package

3. Select a diagram

Select part(s) | property(s) ko
be instantiated. You can
change tvpe of the selected
part {to another subkype)
using the drop-down lisk bos
below the tree, A part with an
abstract bvpe cannot be
selected, unless changing its
tvpe to one of the subkype of
the abstract bype, Default
walues, if existed, will be
used; new instance will not be
created For a part with
default value,

(press SHIFT and click ko
select recursively)

B- [¢] & satelliteSystem [Satelite]
- CE +Conl : Satelice: :Control [Satelite:: SateliteSystam]

@ +Pcon ; SwskL Profile; Blocks: :Real [3atelite:: Control] {value = 2000}
0@ +Weon : SysML Profile: :Blocks: : Real [Satellice: : Control] {¥alue = 400}

Bt CH +Insl @ Satelite:: Instruments [Satelite: SateliteSystem]
b @ +Pins : SwsML Profile::Elocks: :Real [Satelite: :Instruments] {value = 2100}

O3 +Wins ; SwsML Profile; :Blocks: :Real [Satelite:: Instruments] {Yalue = 2100}

B[] [-powerl : Satellite: :PawerBalance [Satelite::SateliteSystem]
= 8 +Prol : Satelite::Propulsion [Satelite: SatelliteSystem]

@ +Ppro ¢ SysML Profile: :Blocks: :Real [Satelite: :Propulsion] {value = 4800}

- @ +Wpro : SysML Profile: :Blocks: :Real [Satellite: :Propulsion] {value = 4800}
=3 [B +Psyl: Satelite::Powersystem [Satelite: Satelitesystem]

@ +Power : SysML Profile: :Blocks: :Real [Satelite: : Power System] {Yalue = 1000
AL Profil

@ +Weight @ SyshL Profile: :Blocks: :Real [Satellite:: SatelliteSystem]
B[] 3 -weightl ; Satelite: weightBalance [Satelite::SateliteSystem]

Tvpe

@ Real [SwsML Prafile; :Blocks]

e

(1)

< Back [Mext =][Finish][Cancel][Help

]

3.In Step 2 (Select a package), create a new package named Satellitelnstance02 (Figure 39)

Figure 38 -- Automatic Instantiation Wizard - Step 1.Select parts

and click Next.

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

41

E Automatic Instantiation Wizard

() 1. Select parts

(%) 2. Select a package

("1 3. Select a diagram
Select a package to hald

instance specificationis) ko be
created,

E-E Data
B Satelite
P 7 Satellitelnstance0l
satelitelnstancedz
7 SatelliteSpecification
-- Paralagic Profile

Create

Clone

[< Back H Mext = H Finish H Cancel][Help

Figure 39 -- Automatic Instantiation Wizard - Step 2.Select a package

4. In Step 3 (Select a diagram), type: Satinstance02BDD in the Type diagram name box, and
select BDD as the diagram type (Figure 40).

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

E Automatic Instantiation Wizard

() 1. Select parts Create a new diagram

() 2. Select a package [] create link between instances

(%) 3. select a diagram
Type diagram name:

Check the "Create a new |SatInstanceI32EEDD| |
diagram" checkbox if you
want ko create a new Select diagram type:

diagram to display

: R |SysML Block, Definition Diagram w |
instance specification(s),

Select owner For diagram:
Check the "Create link,

between instances" EE Data

checkbox if wou also wank £ Satelite

ko display link{s) among B3 Satelitelnstance0l
those instance SatelliteInstancenz
specification(s), E-F7 Satellitespecification
-----] Conkral

-----] %5 _heading

-----] Instrurments

----- 3 powerBalance

----- E] PowerSystem

----- E] Propulsion

-----] satelliteSystem

FElaas o lam o

|

[Create Owner] [Clone]

[Finish H Zancel][Help]

Figure 40 -- Automatic Instantiation Wizard - Step 3.Select a diagram

5. Click Finish. The Satinstance02BDD diagram will be created (Figure 41).

42 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

bdd [Package] Satelitelnstance0z [@Instance of the Satelite=ystem]J

zhlocks
satelliteSystem : SatelliteSystem
Caonl = satellite Systerm.cont
Ins1 = satelliteSystem.ins1
Fro1 = satelliteSystem.prol
Fsyl = satelliteSystem. psyl
Weight=""
zhlocks zhlock:
satelliteSyst satelliteSyst
em.psyl : em.coni :
Power e Control
ol Peon="2000"
Fower="1000" Woon ="400"
Wipsy="3000"
zhlocks zhlocks
satelliteSyst satelliteSyst
em.ins1: em.prol :
Instruments Propulsion
Fins="2100" Ppro="4800"
Wing="2100" Woro="4800"

Figure 41 -- Example of Instance Created by Automatic Instantiation Wizard with Initialized Slots

6. Right-click the Satellitelnstance02 package in the browser and select ParaMagic > Util > Cre-
ate CXI_heading (Figure 42).

7. Right-click again and select ParaMagic > Util > Add default causalities. The package will
then be ready for ParaMagic Plugin.

SysML Diagrams

i 31 *® = E = 1
Conkainment g £ Lq?i% i - B bbb gm B 10 = 8 B gE D_D':./'r.?'
B [l = Somn immmaa]
B Data || = note A
BB MO Customization For SystL [k bdd [Package] Sateliteinstance02 @ Instance of the: Satelltesystem]J
:) = problem
£ satellite P T I .
B~ Relations = Ratianale - .
) zhlocks =i
B3 ateliteInstance0l abe Texk Box A tellite Syst : SatelliteSyst .,
[Bl a1 - [
B-E 54 Hew Element p || Gont = satelliteSystern.con?
O c _ Ins1 = satelliteSysterm.inst - -
o Mew Diagram F || Pro1 = satelliteSystem.prai
E-E Mew Relation » || Pyl = satelliteSystempsyl |
e+ Ins Weight=""
E-EF Po Open in Mew Tab
E-E Po o e e T T
B Prl Specification Enter hlocks = «bl_ock» 1 |
ing... sateliteSyst satelltedyst |
B-E sal] Use Case Mumbering L 1:
B g Requirement ID Numbering. .. PowerSyste Control
I Salf m Pecon="2000" || - oo
1T Sl o To * ||| Power="1000" Weon ="400"
. [e LY IS Refactor » Wpsyz “3D|:|D“
I Select in Struckure Tree
o & Zoom I:[Related Elements » «H_ock» = «bl_ock» 8y
satelliteSyst satellite Syst
Zoarn E g 0
. Tools » emins1: em.proi: ||
Ingtruments Propulsion
Stereotype » Pins ="2100" Ppro="4800"
A - Rename - YWins ="2100 Wipro="4800" |
M Copy ChelC |
Copy as LRL
&
% Cut Chrl4+2
fr Delete Delete
Create Svmbol Chrl4shift+y
Generate Code Framewark, Chrl4+5
Check Svntax
Find... Add default causalities
Modules »
Generate Report... » | LIEil » | Create CXI_heading
ParaMangic » | Excel »
Fim=ei

8. Right-click the Satellitelnstance02 package in the browser and select ParaMagic > Browse to

Figure 42 -- ParaMagic Shortcut Menu - Util

open the ParaMagic browser (Figure 43).

SysML Diagrams

| ParaMagic{TM) 16.0 - Satellitelnstance0?

Syrbol Type Causality Yalues
SatelliteSvstem
Control
REAL undefined 2,000
REAL undefined 400
-4 Inst Instruments
i@ Pins REAL undefined 2,100
L@ Wins REAL undefined 2,100
4@ Prol Propulsion
i@ Ppro REAL undefined 4,800
L@ Wpro REAL undefined 4,800
-4 Psyvl PawerSystem
@ Power REAL undefined 1,000
L Wpsy REAL undefined 3,000
----- & Weight REAL undefined IEEss
[Expand][Collapse Al] [Reset][Update to SysML
root { SakelliteSystem)
Marne Lacal Oneway | Relation Active
wiight 1 s F] Weight=Prol.Wpro+Ins1.Wins+Conl . Weon+Psy 1, Wpsy [v]
powerl 0 F] Psv1.Power=Prol.Ppro+Ins1 . Pins+Conl.Poon [v]

Figure 43 -- ParaMagic Browser

9. You can then use this browser to calculate the values of the properties. For more information on
how to use this browser, see Paramagic User Manual.

5.1.5 Using SysML BDD Elements

Block E

SysML blocks can be used throughout all phases of system specification and design, and can be applied to
many different kinds of systems. These include modeling either the logical or physical decomposition of a sys-
tem, and the specification of software, hardware, or human elements.

A Block is a modular unit that describes the structure of a system or an element. It may include both structural
and behavioral features, such as properties and operations, that represent the state of the system and behavior
that the system may exhibit. Some of these properties may hold parts of a system, which can also be described
by blocks. A block may include a structure of connectors between its properties to indicate how its parts or other
properties relate to one another.

Any reusable form of description that may be applied to a system or a set of system characteristics can be
described by a block. Such reusable descriptions, for example, may be applied to purely conceptual aspects of
a system design, such as relationships that hold between parts or properties of a system. Parts (properties) in
these systems can interact by many different means, such as software operations, discrete state transitions,
flows of inputs and outputs, or continuous interactions. Connectors owned by SysML blocks can be used to
define relationships between parts or other properties of the same containing block.

Non-Normative Blocks
MagicDraw SysML proposes five block subtypes:
Domain @

A Domain is a set of objects with a specific context and specific elements containing resources
that are relevant to the objects. A domain should be used to manage those resources.

SysML Diagrams

External @
An External is a block that interacts directly with the system to be modeled. It helps the system
modeler identify the system of interest relative to its environment.

System

A System is an artifact created by humans and consisting of blocks that pursue a common goal
that cannot be achieved by the system’s individual elements [1]. SysML supports the specifica-
tions, analysis, designs, verifications, and validations of a broad range of complex systems.
These systems may include hardware, software, information, processes, personnel, and facili-
ties.

Subsystem

A Subsystem is a system block that, in turn, represents an independent system. This is often
the case in a large system (Systems of Systems, SoS) [1]. A subsystem is typically represented
by a set of logical or physical parts in a Block Definition Diagram. These parts realize one or
more system operations.

System Context g

A System Context is a virtual wrapper around the entire system and its actors [1]. A system
context refers to a defined usage of a block. It describes some of the top-level entities in the
overall enterprise and their relationships by establishing system boundaries and top level use
cases. It depicts each of the constraint blocks or equations that will be used for the analysis and
the key relationships between them. A system context can be seen as an interface between
systems and their external environments.

These block subtypes are generally used to provide more information on the block usage and/or block context.
Constraint Block

Constraint blocks provide a mechanism for integrating engineering analysis such as performance and reliability
models with other SysML models. Constraint blocks can be used to specify a network of constraints that repre-
sent mathematical expressions such as {F=m*a} and {a=dv/dt}, which constrain the physical properties of a
system. Such constraints can also be used to identify critical performance parameters and their relationships to
other parameters, which can be tracked throughout the system life cycle. A constraint block includes con-
straints (such as {F=m*a}) and their parameters (such as F, m, and a). Constraint blocks define generic forms of
constraints that can be used in multiple contexts.

Reusable constraint definitions can be specified on Block Definition Diagrams and packaged into general-pur-
pose or domain-specific model libraries. Such constraints can be arbitrarily complex mathematical or logical
expressions. The constraints can be nested to enable a constraint to be defined in terms of more basic con-
straints such as primitive mathematical operators.

In general, you should define constraints in constraint blocks in a Block Definition Diagram first, and then use a
Parametric Diagram to bind constraint parameters to properties.

Quantity Kind [E
A Quantity Kind (formerly ‘Dimension’ in SysML 1.0 and 1.1 specifications) is a kind of quantity that may be

stated by means of defined units. For example, the quantity kind of length can be measured by units of meters,
kilometers, or feet.

4 The only valid use of a Quantity Kind instance is to be referenced by the “quantity kind” property of a
Value Type or Unit stereotype.

Unit
A Unitis a quantity in terms of which the magnitudes of other quantities that have the same quantity kind can be

stated. A unit often relies on precise and reproducible ways of measuring the unit. For example, a unit of length
such as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less

SysML Diagrams

stable or precise ways to express some value, such as a cost expressed in some currency, or a severity rating
measured by a numerical scale.

it The only valid use of a Unit instance is to be referenced by the “unit” property of a Value Type stereotype.
Value Type [

A Value Type is defined as a stereotype of UML Data Type to establish a more neutral term for system values
that may never be given a concrete data representation. A Value Type adds an ability to carry a unit of measure
of a quantity kind associated with the value. If these additional characteristics are not required, then UML Data
Type may be used (it is, however, not recommended by SysML 1.2 specification).

In general, define quantity kinds first, followed by units and their quantity kinds. After that, define value types
and their units (and quantity kinds). However, users often forget to enter the corresponding quantity kind of a
value type with unit. SysML Plugin provides an active validation constraint for filling the correct quantity kind to
a value type with unspecified quantity kind, by selecting the Apply valid quantity kind to the Value Type
option. See the ‘Validation’ section below for more details.

L sl dnit

|Guantity Kind = 0= | metre : SimpleUnit
«"-."'EluET':."FIE» | |Engtth
m il hame ="metre"
e guantitykind = lengthQk
unit= @ metre sytnboal="m"
Figure 44 -- Value Type Example Figure 45 -- Unit Example
NOTE SysML Plugin contains a model library that holds more than 80 units

and quantity kinds of S| system, to be used as references of Value
Type elements.

Flow Specification E|
A Flow Specification specifies inputs and outputs as a set of flow properties. It has a “flowProperties” compart-

ment that lists the flow properties. A flow specification is used to type Flow Ports, in order to specify items which
can flow via the ports.

B The only valid attribute of a Flow Specification element is a Flow Property.

For more information on the flow port and the flow properties, please refer to the ‘SysML Internal Block Dia-
grams (IBD)’ section below.

5.1.6 Converting Data Types to SysML Value Types

SysML specification 1.2 suggests to use Value Type as the type of every value property. Therefore, every Data
Type typing a Value Property should be either (i) replaced by another Value Type or (ii) converted to be a Value

Type.

SysML Diagrams

(i) Replacing UML Primitive Data Type with SysML Value Type

Every Value Property typed by a Primitive Data Type, e.g., Integer, String, Boolean, etc., will break a validation
constraint (Figure 46). You can replace such Primitive Data Type usage with a corresponding Value Type easily
using the suggested solution “Replace primitive DataType with equivalent ValueType”, when available.

bad [Model] Data[Urtitlect]]

Type
zprimitives LML Standard Profile: UML2 Metamodel:AuxilianeConstructs: PrimitiveTypes: Boolean
—
=
-
zhlock: -
A P
nmnartios il
h - Ronlean il
i:Integer [
—
[] —
Type
sprimitive: LML Standard ProfilesUMLZ Metamodel:AuxilianvConstructs: PrimitiveTypes:integer

Figure 46 -- Invalid Value Properties

To replace Primitive Data Type with equivalent Value Type:

e In Active Validation Results window, select the property(ies) which is(are) typed by Primitive
Data Type(s). See 6.1 Active Validation for more detail on such window.

e Right-click on the selected element(s).
e The shortcut menu will display.

e In the menu, select “Replace primitive DataType with equivalent ValueType” (Figure 47).

& Ackive Validation Results

Aictive Yalidation Resulks o ox

BT8O Ee Bl K D E e A v v | <aiLs v|.

Element Severity Abbreviation

mn -+ ; Integer [A]

—_—

Remove YalueProperty stereatype

m +b : Boolean [4]

Replace primitive DataType with equivalent ValueType

Igrore

Mowe to Search Results

Figure 47 -- Active Validation Results Window Showing Invalid Value Properties

e The the selected property(ies) will then be typed by the equivalent SysML Value Types
(Figure 48).

48 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

bdd [Model] Dsts [Uritlec])
Type
evalueTypes:Syshl Profile;:Blocks: :Boolean
7
!
zhlocks !
i /
value s
b : Boolean
i Integer [
Y
Y
Type
gvalueType:Syshl Profile;Blocks:Integer

Figure 48 -- Valid Value Properties

(ii) Convert Data Type To Value Type

Simply apply the «ValueType» stereotype to the Data Types which type Value Properties in your SysML project.

bdd [Model] Data [Main BOD])
sdataTypes
Type D1
gilataType:D1
shlocks:
A rd
pmnariar i
-l il
el : El &y
—] ™ 5
senumerstion:
E1
Type literalt
zenumeration:E1 literal2

Figure 49 -- Value Properties Typed By Data Types.

49 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

bed [Madel] Data Main BOD 1]

Y alueTypes
Type D1
svalueType:D
zhlock:
A #
vakes 4
ol D [
el El =8
~

sWalueTypes 3
E1

literal
literal2

Tyvpe
svalueTypesE1

Figure 50 -- Converted Value Properties

You can specify each Value Type’s Unit and Quantity Kind later, if necessary.
5.1.7 SysML Callout Box

To create a callout box showing the attributes, constraints and tag values of an element:

1. Either:
e Created an the anchored Note to the symbol of element on the diagram using
the anchor button in smart manipulator or
e Create Note by using the diagram toolbar and create anchor line to the
symbol of element.
2. Either :

e Click Edit compartment of anchored Note using the smart manipulator button on
Note (Figure 51) or

e Select the context menu items in Edit Compartment menu group (Figure 52).

zhlock:
Block

Edit Compartment

Figure 51 -- Edit Compartment Manipulator Button

SysML Diagrams

51

E Compartment Edit

B
ghlocks | — = Symbol{s) Properties. .. Alb+Enker
Block
Aukosize
HTML Texck
Edit Compartment P Elemnent Propertiss
Show Stereotypes ¥ Conskraints
Text Display Mode b Tagged Yalues

v | Show Element Properties
Shiowe Conskraints
Constraint Text Mode]
Show Tagged Yalues

v | Wrap Words

Figure 52 -- Edit Compartment Context Menu Group

3. The Compartment Edit dialog will pop up (Figure 53)

x)

Element Properties Canstraintsl Tagged Yalues |

All: Selected:
isEncapsulated = true allocatedFrom = Element2, connector1

allocatedTo = portl, partl

=

<

Cancel

Figure 63 -- Compartment Edit dialog

4. Select the element properties, Constraints and tagged values which you want to show in the
callout box. Then click OK to close the dialog.

5. Select Show Tagged Values in the context menu of Note symbol to show the selected tagged
values in callout box (Figure 54).

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

AN

allocatedFrom
zhlocksElementz
grconnector:Elementdconnector

allocatedTo
shlocks | — |eatomicFlowPorts Elerment3::port
Block zpart:Elementd:parti

Figure 54 -- Callout Box with the SysML Callout Style

6. You can customize the display of the callout box using Symbol(s) Properties dialog of Note
symbol (Figure 55).
e SysML Callout Style symbol property can be used to switch between MagicDraw
standard callout style and the SysML callout style. By default, this property is set to
true for the SysML project. With SysML callout style, the element types (e.g.
«block», «connector», «atomicFlowPort», «part») will be shown instead of the icon
of the tagged values which are the model elements.

e SysML Element Type symbol property can be used to show or hide the element
types in the callout box when it is displayed with SysML callout style.

X Symbol Properties @

{Mate [SysML Block Definition Ciagram |
BBl e = B oex W
HTML Text Erue -
Text Display Mode Do niok shiow
Show Line Between Compartments ke
Shove Documentation Skereobypes Frue
Show Tagged values Stereotypes krue
Show Qualified Mames For Properties Yalues [] False
Show Elernent Propetties krue
Show Sterectypes Shape Image and Text
SysML Callout Skyle krue
SysML Element Type Erue
Syrmbal 1D 16 _sbeta 17530432 _1264070354546 490, ..
Symbol Bounds java, awk Rectangle[x=574,y=147,width=19.,, »
(Mame)
(Descripkion)
Apply Style: |Default w
[] Make Default

Figure 55 -- Symbol Properties Dialog of Callout Box

SysML Diagrams

‘ NOTE ‘The new callout notation applies to all types of SysML diagrams.

5.2 SysML Internal Block Diagrams (IBD)

Internal Block Diagrams are based on UML composite structure diagrams and include restrictions and exten-
sions as defined by SysML. An Internal Block Diagram captures the internal structure of a Block in terms of
properties and connections among properties. A Block includes properties so that its values, parts, and refer-
ences to other blocks can be specified. However, whereas an Internal Block Diagram created for a Block (as
an inner element) will only display the inner elements of a classifier (parts, ports, and connectors), an Internal
Block Diagram created for a package will display additional elements (shapes, notes, and comments).

All properties and connectors that appear inside an Internal Block Diagram belong to (are owned by) a Block
whose name is written in the diagram heading. That particular Block is the context of the diagram. SysML per-
mits any property (part) shown in an Internal Block Diagram to display compartments within the property (or
part) symbol.

5.2.1 SysML IBD Metamodel and Elements

bdd [Model] Data[@Magicmaw SyshL Properties]J
zmetaclasss
Property
T F 3
satereotypes
BlockProparty
[Property]
zsterectypes
AbstractReforence Propenty
[Property]

LEl L=l LEl [ul
sstereotypes sstereotypes setereotypes setereotypes
PartProperty SharedProperty ReferenceProperty ValueProperty

[Property] [Property] [Property] [Property]

Figure 56 -- MagicDraw SysML Properties Metamodel

SysML Diagrams

Icon

Icon

Description

Part Property [MDSysML]:

A Part Property is a property that specifies a part with strong ownership and coinciden-
tal lifetime of its containing Block. It describes a local usage or a role of the typing Block
in the context of the containing Block. Every Part Property has ‘composite’ Aggrega-
tionKind and is typed by a Block. Part Properties are displayed in the ‘parts’ compart-
ment.

Shared Property [MDSysML]:

A Shared Property is a property that specifies a shared part of its containing block.
Every Shared Property has ‘shared’ Aggregationkind and is typed by a block.
Shared Properties are displayed in the ‘references’ compartment.

Reference Property [MDSysML]:

A Reference Property is a property that specifies a reference of its containing Block to
another Block. Every Reference Property has ‘none’ AggregationKind and is typed
by a block. Reference Properties are displayed in the ‘references’ compartment.

Value Property [MDSysML]:

A Value Property is a property that specifies the quantitative property of its containing
Block. Every Value Property has ‘composite’ AggregationKind and is typed by a
SysML Value Type. Value Properties are displayed in the ‘values’ compartment.

bdd [Maodel] Data| @ SysML properties]J
==metaclaszs==
Property
F 3 F 3
Lol [
==sterectype== ==sterectype==
DistributedProperty ConstraimtProperty
[Propetty] [Propetty]

Figure 57 -- SysML Properties Metamodel

Description

Constraint Property [SysML]:

A Constraint Property is a property that specifies the constraints of other properties in

its containing Block. Every Constraint Property has ‘composite’ AggregationKind and
is typed by a Constraint Block. Constraint Properties are displayed in the ‘constraints’
compartment.

SysML Diagrams

Icon

Icon

Description
Distributed Property [SysML]:

A Distributed Property is a property of a Block or a Value Type, used to apply a proba-
bility distribution to the values of the property. Specific distributions can be defined by
applying a subclass of the DistributedProperty stereotype to the property.

bdd [Model] Data | @HDW Part]J

==metaclazs==
Port

==sterectype==
FlowPort
[Fort]

Figure 58 -- Flow Port Metamodel

Description
Flow Port [SysML]:

A Flow Port is a port that specifies the input and output items that can flow between a
Block and its environment. Flow Ports are interactions points through which data, mate-
rial, or energy “can” enter or leave the owning Block. The specification of what can flow
is achieved by typing the Flow Port with a specification of things that flow. This can
include typing an atomic Flow Port with a single type (Block, Value Type, or Signal) rep-
resenting the items that flow in or out, or typing a non-atomic Flow Port with a Flow
Specification which lists multiple items that can flow. In general, Flow Ports are
intended to be used for asynchronous, broadcast, or send-and-forget interactions. Note
that only non-atomic Flow Ports can be conjugated. Once conjugated, all the directions
of the typing Flow Specification's items are negated.

5.2.2 SysML IBD Toolbar

Button

Element (hot key)

Value Property:

See Section 5.2.1 for description. |

Part Property:

See Section 5.2.1 for description. G|

SysML Diagrams

Button
Element (hot key)
Shared Property:
See Section 5.2.1 for description. =
Reference Property:
See Section 5.2.1 for description. CH
Constraint Property:
See Section 5.2.1 for description.
Distributed Property:
See Section 5.2.1 for description. Cm

Select Nested Part:

Click this button to display a nested part inside a given context. For more infor-
mation, see Section 5.2.3 SysML IBD Specific Features: (vii) Select Nested
Part.

Flow Property [SysML]:

A FlowProperty signifies a single flow element that can flow to/from a block.
Flow properties are defined directly on blocks or flow specifications that are
those specifications which type the flow ports.

Flow properties enable item flows across connectors connecting parts of the
corresponding block types, either directly (in case of the property is defined on
the block) or via flowPorts. A flow property’s values are either received from or
transmitted to an external block.

Port [UML]:

A Port defines an interaction point on a Block or a part, allowing you to specify Ia)
what can flow in/out of the Block/part or what services the Block/part requires

(expects) from or provides (offers) to its environment. Ports are connected by (SHIFT +R)
connectors to other parts or ports.

Flow Port [SysML]:

See Section 5.2.1 for description.
Connector [UML]:
A connector is used to bind two ports together, representing a relationship Vs

between those ports. A connector can be typed by an association. A logical
connector can be allocated to a more complex physical path depicting a set of
parts, ports, and connectors (refer to allocation).

Item Property [SysML]:

An optional property that relates the flowing item to the instances of the con- ™
nector’s enclosing block. This property is applicable only for item flows

assigned to connectors. The multiplicity is zero if the item flow is assigned to

an Association.

(©)

5.2.3 SysML IBD Specific Features

The SysML IBD specific features include:
(i) Display Parts (Diagram shortcut menu)
(i) Display Ports (Property shortcut menu)
(iii) Edit Compartment (Property shortcut menu)

SysML Diagrams

(iv) Show Default Value and Show Slot Type (Property shortcut menus)
(v) Provided/Required Interfaces (Port shortcut / smart manipulator menu)
(vi) Display/Suppress Structure Compartment (Property shortcut menu)
(vii) Select Nested Part

(i) Display Parts (Diagram shortcut menu)

If you have already defined the part(s) (property(ies)) of a Block, you can then display the part(s) on any IBD,
having the Block as its context.

To display parts in an IBD:

1. Right-click an IBD and select Related Elements > Display Parts (Figure 59). All the parts
selected will be listed in the Select Parts dialog (Figure 60).

Specification

Diagram Properties, ., shifk+Enker

Shiowe Diagram Frame

Shiowe Diagram Info

Shiow Cvner
Go To]
Select in Containment Tree Ale+B
Find in Diagram Ckrl+Shift+D
| Related Elements b |
arid r | Display Parts

L3 Print Active Diagram

Shiowe Diagrams in Full Screen Fi1

Close Diagram Chrl+F4
Close all Diagrams But Current Ckrl+Shift+F4

Close All Diagrams Chrl+Al+F4

Figure 59 -- Diagram Shortcut Menu to Display Parts (Properties) of the Context of IBD

SysML Diagrams

----- [] & +part property : BLOCK [Elock]

----- [] @ +reference property : BLOCK [Elock]
----- [] =& +shared property @ BLOCK [Elock]
----- [] @ +JML property © Class [Block]

----- [] @ +value property : YalueType [Elock]

Select Al

----- [] 0@ +constraint property : Constraint Black [Elack]

i5 Parts;

Figure 60 -- Select Parts Dialog

2. Select parts and click OK to show the selected parts in the IBD (Figure 60).

(ii) Display Ports (Property shortcut menu)

If you have already defined the port(s) / flow port(s) of a Block, you can then display the port(s) / flow port(s) on

any part typed by the Block.

To display ports / flow ports on a part on an IBD:

1. You can either (i) select Related Elements. If the type (classifier) of the part owns at least one
port/flow port, the Display Ports option will be enabled for you to select. Select this option (Fig-

ure 61).

or (ii) click the icon on the Smart Manipulator menu of the part, as shown in Figure 62.

Specification Enter

Symbal(s) Properties. ., Alk+Enter

Go To ¥

Refactor 3

Select in Containment Tree Ale+B

Related Elerments b

Stereotype » Cisplay Porks

Edit Campartment]

Show Stereaktypes »

Shiow Cvner 3 Ilsed Ew... Chrl+Al+H
Wrap Wards Depends On... Chel+alk+D
Shiow Tagged Yalues b

Figure 61 -- Property Shortcut Menu to Display Ports

SysML Diagrams

==hlock==
partib : Block3

1
L)

B oy o\

e
b
.-"EI

E e e Dizplay Ports

Figure 62 -- Property Smart Manipulator Menu to Display Ports

2. All ports (including flow ports) will then be listed in the Select Ports dialog (Figure 63).
3. Click OK (Figure 63) to view the selected (checked) port(s) on the part symbol.

E Select Ports

i Select Ports!

- b +i: Portl [Blocks]
- B 4o Partz [Elocks]

Figure 63 -- Select Ports Dialog

4. The selected ports will then be displayed on the part symbol (Figure 64).

i: Portl o Part2

==hlock==
partib : Block3

Figure 64 -- Example of Ports Displayed
(iii) Edit Compartment (Property shortcut menu)

You can customize element(s) to be displayed in the various compartments of a part. Such compartments
include Constraints, Tagged Values, Default Value, Structure, etc.

To customize a compartment of a part:

1. Right-click a part and select Edit Compartment on the shortcut menu.
2. Select a compartment to be customized (Figure 65). The Compartment Edit dialog will open
(Figure 66).

59 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

n — =
==hlock== r
: part property : B Specification Enter
£ : Symbal(s) Properties. ., Alk+Enter
Go To ¥
Refactor 3
Select in Containment Tres Ale+B
Related Elerments b
Skereotyvpe]
Edit Compartment » Conskraints
Show Stereokypes ¥ Tagged Yalues
Show Cnuner L Default Yalue
Wrap Words Struckure
Shiow Tagged Yalues » ‘propetties
Show Default Yalue ‘references
Show Slot Type » iparts
Suppress Structure wvalues
SwstL Internal Properties Compartments ¥ 'conskraints
Context-Specific Yalues » soperations
Type ¥ Conkext-Specific Value
(Unspecified)

0
0.1
D. .*
1
i, .*
+

Figure 65 -- Property Shortcut Menu to Customize Part Compartments

3. In the Compartment Edit dialog, move an element from the All: to the Selected: box to dis-
play the element (Figure 66). Click OK when done.

SysML Diagrams

P Compartment Edit

Canstrainks Tagged Yalues Defaulk Yalue
Structure | \properties references ‘parks walues wconskrainks roperations
all: Selected:
+conskraint @ Constraint Block
+part ; Block
+ualue | m

Figure 66 -- Compartment Edit Dialog

(iv) Show Default Value and Show Slot Type (Property shortcut menus)

Use (a) Show Default Value to display the default value of a part. If the default value is an Instance Specifica-
tion, the defaultValue compartment containing the Instance Specification slot(s) will be displayed on the part
instead. In this case, you can use (b) Show Slot Type to display the type(s) of the slot(s) in the compartment.

(a) Show Default Value

To display the default value of a part (property):

1. Right-click a part or property and select Show Default Value (if it already has a default value)
on the shortcut menu (Figure 67).

NOTE If the property has no default value, drag an instance with slot(s) to the property symbol.
The instance will then be assigned as the default value for this property, and its slots with
values will be displayed inside the property symbol (Figure 68).

61 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

" z=blocks> |

| reference property : Block |

—u — 3

| ==h

i part prog Specification Enter

| WE— Symbol(s) Properties. .. Alk+Enker
Go Ta bk
Refactor]
Select in Containment Tree Alk+B
Related Elements b
Stereotvpe b
Edit Compartment b
Show Stereotypes [
Show Owvener]
Wrap Words
Show Tagged Yalues [

Show Default Yalue

Show Slot Twpe b

Suppress Structure

SysML Internal Properties Compartments ¢
Conkext-Specific Yalues b
Tvpe ¢

Figure 67 -- Property Shortcut Menu to Show Default Value

2. The default value of the property will be displayed. If the default value is an Instance Specifica-
tion, the defaultValue compartment containing the Instance Specification slot(s) will be dis-
played instead (Figure 68).

— SRl L= Y — =

==hlock==

| reference property : Block |

==hlock==
part property : Block
| defaultValue |
[vallue property="321" |
reference property = instance
part property = instance

Figure 68 -- defaultValue Compartment

(b) Show Slot Type

Use the Show Slot Type shortcut menu to display the slot types in the defaultValue compartment of a property,
having an Instance Specification as its default value:

SysML Diagrams

To display the slot types of a part:

1. Right-click a property and select Show Slot Type on the shortcut menu. Three Show Slot
Type options will be available on the shortcut menu (Figure 69): (i) None (no type slot will be
displayed), (ii) Name, and (iii) Qualified Name.

==hlock==
reference property : Block
< et =
==hla
part proper Specification Enter
defau Symbol(s) Properties., .. Alk+Enker

value property 5 T

reference prog D, T X

part property 3 Refactar b

e Select in Containment Tree Alk+E
Related Elements b
Stereokvpe b
Edit Compartment b
Show Stereotypes b
Show Owner]
Wrap Words
Show Tagged Yalues b
Show Default Yalue
| Shaw Slat Type 3 | Mane

Suppress Struckure Mame
SysML Internal Properties Compartments k Cualified Marne
Context-Specific Yalues b
Tvpe 4

Figure 69 -- Property Shortcut Menu to Show Slot Types

2. If you select Name or Qualified Name, the slot types will be displayed (Figure 70).

==hlack==
reference property : BLOCK

==hlock== =
part : Block

defaultValue
value property ValueType ="321"
reference property BLOCK = instance
part property - ELOCK = instance

Figure 70 -- defaultValue Compartment with Slot Types

(v) Provided/Required Interfaces (Port shortcut / smart manipulator menu)

Provided/Required Interfaces help identify compatible ports that can be connected together in an IBD. On a
port, you can either

(a) create a new Provided/Required Interface(s) using the port specification dialog, or

SysML Diagrams

(b) display an existing Provided/Required Interface(s) using the port shortcut menu.

(a) Creating New Provided/Required Interface(s) Using the Port Specification Dialog

To create new Provided/Required Interface(s) of a port:

1. Either,
e Right-click a port to open its shortcut menu, and then select Specification to open
the Specification dialog. Then, select the Provided/Required Interfaces group to
open the Provided/Required Interfaced pane (Figure 72).
OR

/B

:ﬁ d -Iiﬁ'erential
tram ,El | 4 |

| Frovided/Fequired interfacesl
T T

Figure 71 -- Port Smart Manipulator Menu - Provided/Required Interfaces

e Click a port in a diagram to open its smartmanipulator menu, and then select the
Provided/Required interfaces icon to open the Provided/Required Interfaced
pane(Figure 72).

E Port - trsm E|

% = o= History: :|]:I +trsm [HAWModel: :HSUY Skruckure: :PowerContralld, V|
B +krsm ProvidedfRequired Interfaces
EEI--- DocurnentationfHyperlinks Al B B
----- Usage in Diagrams il VN
Provided/Required Interfaces Marme Type |
4| Ternplate Parameters =]
Inner Elements .

I_ICECmds Provided
Y| Relations - .
1 Tags
Zonskrainks
1| Language Propetties

Provided

Figure 72 -- Port Specification Dialog, Provided/Required Interfaces Group

NOTE Only typed ports can realize / use interfaces.

2. Click Add (Figure 72) and then select either (i) Provided or (ii) Required.

64 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

Case 1) If the port is typed, the Select Interface dialog will open (Figure 73). You can then
either:
e select any of the existing interfaces (and flow specifications) to be used as the
Provided / Required Interface of the port, or

e click Create to create a new interface. The interface specification dialog will then be
displayed, prompting you to type in its name. The new interface will then be used as
the Provided / Required Interface of the port.

E Select Interface
Model |

Ef_ - REEOONS
El-C3 HIlY Interfaces

- I_IEPCCmd
-3 I_IEPCData

-3 I_TRSMCmd

i3 I_TRSMData

----- B3 1Fs_EPC

----- B9 1Fs_I1CE

----- B3 1Fs_TREM

----- = ICEData hd
< | >

’ i Create] [Clone]

Figure 73 -- Select Interface Dialog

Case 2) If the port is not typed, the Select Port Type menu will then display (Figure 74 if Pro-
vided is selected, and Figure 75 if Required is selected).

65 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

[X select Port Type §|

Port bype must be specified!
Please select one of the Following options:

() Bet provided interface as port bype

(#) Create "durmmy” port type autamatically

(3 Select or create port bype manualky

E Select Port Type E|

Port bype must be specified!
Please select one af the Follawing opkions:

(%) Ereate "dummy” port bype automatically

() Select ar create port bype manually

Figure 75 -- Select Port Type Menu - Required

Cancel

Interface

Figure 74 -- Select Port Type Menu - Provided

Interface

You can then select:

e (For Provided Interface only) Set provided interface as port type. The Select

Interface dialog (Figure 73) will then open. In the dialog, you can either choose an
existing interface or create a new one, to be used as the Provided Interface and the
type of the port.

e Create “dummy” port type automatically. The Select Interface dialog (Figure 73)

will then open. In the dialog, you can either choose an existing interface or create a
new one, to be used as the Provided or Required Interface (as selected in

Figure 72) of the port. In addition, a dummy classifier, realizing (for Provided) or
using (for Required) the interface, will be automatically created and used as the
type of the port.

o Select or create port type manually. The Select Port Type dialog (Figure 76) will

then open. You can then choose a classifier to be used as the type of the port. Click
OK, the Select Interface dialog (Figure 73) will then open. In the dialog, you can
either choose an existing interface or create a new one, to be used as the Provided
or Required Interface (as selected in Figure 72) of the port. In addition, a
Realization (or Usage) dependency will be automatically created from the port type
to the Provided (or Required) Interface of the port.

SysML Diagrams

[X select Port Type

Model |

Search By Mame:

[ld
o
'm
i
|3

E-EF Fs_ICE

-8 F5_TRSM
B2 FuelFlow
-8 FuelTankFitting
T 1CECmds
E-{7 I_ICEData _d
BT I_IEPCCmd

BT I_IEPCData

B0 I_TRSMEmd

E-{ I_TRSMData

------ = 1Fs_EPC

- TFS_ICE

-8 TFS_TRSM

E-[3 ICEData

Figure B.20 Interfaces Typing Standardf

' Figure B.21 Inkially Defining Flow Specifi 3

i-malar kA —

< | *

[Create] [Clone]

Figure 76 -- Select Port Type Dialog for Provided / Required Interface

(b) Displaying Existing Provided/Required Interface(s) Using the Port Shortcut Menu

To display the existing Provided/Required Interface(s) of a port:

1. Right-click a port to open its shortcut menu. Then, either;
o select Show Required Interfaces or Show Provided Interfaces (Figure 77),

or
e select Related Elements > Display Provided/Required Interfaces (Figure 78).

67 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

.ﬁﬁblnckbb
(Paggl g
[l

:.I;I:; Specificakion Enter
Symbol(s) Properties, .. Alk+Enter
Go Ta]
Refactor b
Select in Containment Tree Alk+E
Related Elements]
Skereokvpe]
Edit Comparkment]

~% PReset Labels Positions
Show Stereotypes]
Show Tagged Yalues

Show Provided Interfaces

Show Required Interfaces

Tvpe]

Figure 77 -- Port Shortcut Menu to Display Provided or Required Interface(s)

shlocks =
: Part1
E Specification Enter
Symbal(s) Properties. .. Alk+Enker
Go To b
Refactar]
Select in Containment Tree Alt+E
Select in Structure Tree
| Related Elements] | Display Paths
Skereotype b
Edit Compartment 3 Display Related Elements
=" Reset Labels Positions | Cisplay Provided/Required Interfaces
Shaow Mame Used By, Chrl+-Al+U
Shaw Stereotypes 9 Depends On... Chrl4+-AlE+D

Figure 78 -- Port Shortcut Menu to Display Provided and Required Interface(s)

2. The Required / Provided Interfaces will be displayed on the port, in the form of ball-socket (lolli-
pop) notation (Figure 79).

SysML Diagrams

ibd [Block] Azzembly [Assemhly]J

==hlock==
: Part2

==hlock==
: Part1

Figure 79 -- IBD with Required and Provided Interfaces Displayed

The model in Figure 79 corresponds to the model in Figure 80.

bdd [Model] Data[@Eﬁall and Socket]J
==hlock==
Assembly
|/;)'|._
i
==hlock== ==hlock==
Partl | - portd Port2 | part2
L | L
(Ej_
i

Figure 80 -- BDD with Parts, Ports and Interfaces
(vi) Display/Suppress Structure Compartment (Property shortcut menu)

OMG SysML specifications allow properties to have structure compartments so that their internal properties
(structures) can be shown.

To display the structure compartment of a property:

1. Right-click a propterty and clear the Suppress Structure option on the shortcut menu (Fig-
ure 81) (do the opposite to suppress the structure compartment).

SysML Diagrams

I ==hlack== = .
reference pr T
o Specification Enter
| ==hl Symbol(s) Properties, ., Alk+Enter
part prop

| defs o To]

| value prope Refactar b

i reference pi : -

part property Select in Containment Tree Alt+EB
i Related Elements]
e

Stereotvpe]
Edit Compartment]
Show Stereatypes]
Show Cvner 3
Wrap Wards
Show Tagged Yalues]
Showe Default Yalue
Show Slak Type ¥
Suppress Struckure
SysML Internal Properties Compartments]
Context-Specific Yalues]
Type]

Figure 81 -- Property Shortcut Menu to Display Structure Compartment

2. The structure compartment of the property will be displayed (Figure 83). Otherwise, the prop-
erty will look like in Figure 82.

[== = = = = == _ 7}

_ﬁqﬁnd;: -
reference property : Block

T ssblock=s 3 | [~sHionies |
| reference property : Block | PNCLATORETIY: Block
e | defaultValue '

| value property ="321" |
reference property = instance
part property = instance

Figure 82 -- Part without Structure Compartment | |

Figure 83 -- Part with Structure Compartment

NOTE Regarding a typed property with its structure compartment displayed, you can also drag
a classifier to the compartment to create a new property (part) typed by that classifier.

SysML Diagrams

(vii) Select Nested Part

Use the Select Nested Part button on the IBD toobar to display a nested part inside a given context. We will
demonstrate how to use the button using the example in Figure 84.

bdd [Package] data[@ BOD]J

==hlock== ==hlock== ==hlock== ==hlock== ==hlock==
Block1 Block2 Block3 Block4 Block5
parits parts parts parts
Part1a : Block? | |Part2a : BElockd | |Part3a : Blockd | |Partda : BlockS
Part1h : Blocks

Figure 84 -- BDD with Blocks and Their Properties

To display a nested part:

1. Click the Select Nested Part button on the IBD toolbar.

2. Click on the diagram pane. The Select Element dialog will appear, showing all parts (proper-
ties) nested inside the context of the IBD, for example, Block1 (Figure 85).

ibd [Block] Block1 [g Blockl]J

E Select Element
Model i

E-E Blackl
E}I__ﬂ -Partla : Blockz
| E-CE -Part2a : Block4
{ el Fartda ; EBlocks
E}-CH -Partih ; Black3
El-CH -Part3a : Blocks
t [H -Part4a : Blocks

Figure 85 -- Select Element Dialog

3. Select a part and click OK. If Partd4a (typed by Block5) is selected, the following part will be dis-
played (Figure 86).

71 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

ibd [Block] Block1 [[fgj Block1])

==hlock==
Part1a.Part2a.Partda : BElock5

Figure 86 -- IBD of Block1 and the Selected Nested Properties

ibd [Block] Block! [[fgj Block!]J

==hlock==
Part1a.Part2a.Partda : Block5

==hlock== 0
I

Figure 87 -- Creating a New Property

4. Here is another example. If a property of Block1 block; part1b (typed by Block3) is placed on
Block1 of the IBD (Figure 87), select the Select Nested Part button on the IBD toolbar and
place it on the part1b : Block3 symbol. The following Select Element dialog will open (Fig-

ure 88).

SysML Diagrams

ibd [Block] Block1 [i) Block1])

E Select Element

==hlocks== Model |

Part1a.Part2a.Partda : Block5

Elg Blocks
EI'L_E| -Part3a : Blocks
s wzl-Fartda : Blocks

==hlock==
Partib : Block3

Figure 88 -- Placing the newly-created Property on the IBD as a Neste Part

5. In this last example, the dialog in Figure 88 shows all parts (properties) nested inside Block3. If
partda (typed by Block5) is selected, the result will be as in Figure 89.

ibd [Block] Blockl [EFI-:u:k1]J

==hlock==
Part1a.Part2a.Partda : Block5

==hlock== 0
Part1b : Block3

==hlock==
Part3a.Partda : Block5

Figure 89 -- The Selected Nested Part Displayed

As these examples show, the Select Nested Part button allows you to display a deep-nested part, without hav-
ing to display its parent(s) first.

5.2.4 Displaying Structures of Blocks in Compartments or in IBDs

MagicDraw Composite Structure diagrams will not let you display the already-defined internal structures of
Blocks reused as parts in other structures (deep-nested structures). The same problem exists when you need
to modify/extend existing structures in subtypes. Composite Structure diagrams will only let you display:

e parts
e ports on the frame

e ports on every part;and

73 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

e paths for every part and port.

Thus, to redisplay an internal structure in another structure, you have to recreate the internal structure manu-
ally. The graphical layout must also be applied manually, making it a time-consuming activity.

With the Display Internal Structure feature you can copy-and-paste (display) an existing structure diagram
defining a Block (Class) in either:

e the structure compartment of that Block, a subtype of that Block, a part typed by that Block, or a
part typed by a subtype of that Block, or

e another diagram defining either a subtype of that Block or that Block itself.

With this feature, you can now display the already-defined internal structures of Blocks, reused as parts in other
structures (deep nested structures).

To redisplay a Block structure, already-defined in, at least, one structure diagram:

1. Suppose there is the FrontWheelsAssembly IBD, having the FrontWheelsAssembly block
as its context.

2. Right-click the property and select Related Elements > Display Internal Structure from the
shortcut menu (Figure 90). Each IBD having either the type or a supertype of the type of the
property as its context will be available for you to select. For example, in Figure 90, the Front-
WheelsAssembly IBD is available. Select it to display the structure of FrontWheelsAssembly
block in the property (Figure 91).

==hlock== = |.
fromtWheelsAssembly : FrontWheelsAssembl] Specification Enker
Syrbolis) Properties. .. Alt+Enter
Go Ta k
Refactar [
Select in Containrment Tree Alt+B
Related Elements [
EE| Stereotvpe]
Display Parts Autosize
Edit Caompartment »
| Display Internal Structure L | |E FrontWwheelsassembly] FramtwheslsAssembly
Used By... ChrlH-Ale+H - Shiow Constrainks
Depends On... Chrl+Al+D Shows Cvener 3
& Wrap Wards
Shiow Classifier
Shows Tagged Values 3

Figure 90 -- Display Structure Block Shortcut Menu

SysML Diagrams

==hlack== =
fromtWheelsAssembly : FromtWheelzsAssembly
L lettvihesl - Frordwheel r:|
L

B iroweei 1) B0
' |

-,
l_____|

leftHalfShaft

-
. ’ . *
I t T;rque spine 11 Tﬂrque dif : Differential
; e

tram
B

rightHalfShatt

A
e ptl
rfw : FrontWheel [1] _ rightiuhee! : Frontiuheel r
j L

Figure 91 -- Sample of Structure Displayed in Property

3. You can also display the structure in a new blank IBD, having the FrontWheelsAssembly
block or a subtype of the FrontWheelsAssembly block (Figure 92) as its context, using the
IBD shortcut menu (Figure 93). The structure will be as in Figure 94.

==hlack==
FromtWheelsAssembly
EfeEmTes
Ifwy : Frontsheel [1]
rivy . Frontheel [1]

parts
dif . Differertial

Specification Erter
el Symbol(s) Properties. ., AlE+Enter
Mnd'ﬁEdej| Mew Diagrarm P ||[F5] SwsML Internal Block Diagram
;E'E'i o Tao b SwsML Parametric Diagrar
Refactor] @ FsML Ackivity Diagram
Select in Containment Tree Al+B 5] SysML State Machine Diagram
Select in Inhetitance Tree @ SwsML Sequence Diagram
Related Elements ¥ |[&] SvsML Block Definition Diagram
Tools]

Figure 92 -- Creating an IBD for the Subtype of the FrontWheelsAssembly Block

SysML Diagrams

MadifiedFa, |

Specification
Diagram Properties, .. Shift+Enter
Shiows Diagram Frame
Shows Diagram Info
Show Owner
Go To b
Select in Containrment Tree Alb+B
Find in Diagram Ckrl+5Shift+D
| Related Elements b
@ | Fit in Window Chrl Display Parts
Zoarn In Crrl+MumPad + Display Ports
= Foom Cuk Chrl+MumPad -
(i} E Frontwheelsassembly b Display Internal Struckure

Figure 93 -- IBD Shortcut Menu to Display Structure

ibd [Block] MocifiedFya [[MocifidFia U

1

r If;.' H FruthWI?eer['i-]u |

=] : Frpritheel

&

[E— a
leftHaltShatt
¥
—|*2:T':4';‘1”E spline “:T;':que -~ dif : Differential
- tram
trsm ﬂ
rightHalf=haft
. .
| - I:Frl:u ==

rfw : FrontWheel [1]

e

Figure 94 -- Sample of Structure Displayed in IBD

4. You can also display the structure of the FrontWheelsAssembly block in the structure com-
partment of the block itself.

SysML Diagrams

5.2.5 Extract Structure

Extract Structure is the first advanced automated refactoring method in our newly-introduced promising
“Refactoring” tools group.

Extract Structure allows you to easily select a portion of an existing system structure and transform it into
another reusable Block (or Subsystem) which may then be used as parts in many other structures. In addition,
this Extract Structure feature can also play a 'move' or 'decompose’ role when a structure becomes too complex
and requires to be decomposed into several smaller reusable parts.

Recursive decomposition of structure and behavior is an important aspect of the iterative development process.

This feature is particularly useful for the automotive, aerospace, and defense communities for modeling com-
plex systems-of-systems and building reusable components.

To extract a new structure from an existing structure in a classifier:

1. In an Internal Block Diagram or a structure compartment (Figure 95), right-click a portion of the
internal structure (part(s)) which you want to move or reuse (see the red selection rectangle).

NOTE ‘These selected symbols must be owned by the same Classifier. ‘
I_TRSMCmd
¥
ctrl trem : Transmission it _
ﬁt2 : Torgue
~ il W FrontWheel 1] ||]
i torgueln ; Torgue i
| TREMData A i | |
r
gl : Torgue ______
torguedut @ Targue :
1] =pline leftHalfShatt
_ICECmOs ice : InternalCombustionEngine
~ . ==hlock== = trem
ol . fi : Fuelinjector [4] f
t1: Toroue—— dif : Differential
— e
=3 fodi=t ﬂ
I_ICEData
- &]
L¥ [-
Part : ICEFuelFitting tightHalfShat
rfw : FrontWheel [1]
| gl
fuelDelivery » fuslSupply : Fuel N |

Figure 95 -- Internal Block Diagram Before Extracting a Structure

SysML Diagrams

L¥ | .
trem : Tranemission chif . Show Diagram Frame
2 Torgue)
. Show Diagram Info
(1] e S ErorWheel 111
torqueln : Torgue | LSl eel[1] Shiows Cwaner
1 - Toraue Extrack Struckure. .. | Refactar
. ™
EEIGLECE. Tore 1] Is’j"i”e. IeftHala o
ce : InternalCombustionEngine Find in Diagran
Related Elements
==hlock==
fi : Fuelinjector [4] @ Fitin window
i Foom In
folist =, Zoom Ouk
&] (],

L¥ T "~
Port ; ICEFuelFitting Zoom To Selection

arid

L[| Prink Active Diagram

fuelSupply ;- Fuel | Print Selected

Lavaut
Figure 96 -- Shortcut Menu - Extract Structure (Refactoring)
2. Select Refactor > Extract Structure... (Figure 96). The Extract Structure wizard dialog will

open, listing the three steps to extracts a structure: (i) Create a classifier, (ii) Select part(s), and
(iii) Create a property (Figure 97).

E Extract Structure...

(3) 1. Create a classifier Classifier name:

|FrnntWheeIF\ssemb|y |

() 2. Select port(s)

Classifier kind:

| E Block [Class] [SysML Prafile: :Blocks] w i
Specify attributes of the new
classifier to move selected El@ Daka -
parts/properties. B H5UYMadel

E‘j Explanations
B HSUY Analysis
B HSUY Behaviar
D H3LY Requirements

El-F3 H5UW Structure

v
Create Clone
Diagram Type:
SysML Inkernal Elock Diagram w |
[Mext =] [Finish] [Zancel] [Help

Figure 97 -- Create a Classifier Step

3. Step 1: Create a classifier:
e Specify the name of the classifier you want to create and use for holding the
structure to be extracted (called extracted classifier) in the Classifier name box
(Figure 97).

78 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

e Select the kind of extracted classifier from the Classifier kind box by clicking the
arrow button. The classifier kind can be a Class, Block, or Subtype of Block
(Figure 97).

e Specify the owner of the extracted classifier by selecting a Package, Model, or
Profile in the Classifier owner tree. You can also click the Create button to create a
new Package, Model, or Profile, or click the Clone button to clone the selected
Package, Model, or Profile (Figure 97).

e Select the diagram type that will show the internal structure of the extracted
classifier from the Diagram Type box by clicking the arrow button. The diagram type
can be a SysML Internal Block Diagram, SysML Parametric Diagram, or Composite
Structure Diagram. If you do not want to create any diagram, select None.

e Click either Next to proceed to the next step or Finish to finish extracting a structure
(Figure 97).

P Extract Structure...

(3) 2. Select port{s)

the nevs classifier, and
recannect connecking
to mainkain the existing

porkis) of the refactored
propertylies),

() 1. Create a classifier

(") 3. Create a property

Check a checkbox in front of a
port bo recreate the port on

connectors), iF ar, Uncheck
a checkbox in front of a port

connectors, connecked to the

Marne Type Zonneckor Client Supplier
W] [ersm spline dif trsm
W] |rightwhesl B FrontWhes! [... rfw ; FrontWwhesl...
[w] Jeftueheel] FrontWhes! [... [Fiw : Frontvwheel ...

Unselect Al

[< Back H Mext =][Firish ” Cancel H Help]

Figure 98 -- Step 2 - Select port(s) Pane

4. Step 2: Select port(s):
All the ports available to be defined on the Classifier to be created are listed in the table as
shown in Figure 98. If you do not need a port, remove it by clearing the check box in front of
the port name. If you clear any of the ports’ check boxes, the connectors will be directly con-
nected to the structure inside the extracted classifier.

e |n the first column, select the ports which you want to create for the connectors that
are connected to the elements outside the extracted classifier. The connectors
which are shown in the Connector column will be reconnected to these ports
instead of being connected to the selected structures (Figure 98).

e You can change the port name in the Name column (Figure 98).

e You can change the port type using the drop-down list in the Type column
(Figure 98).

e The Connector column shows the name of the connector which is connected to the
created port after a structure has been extracted (Figure 98).

e The Client and Supplier columns show the client and supplier elements of the
connectors defined in the Connector column (Figure 98).

SysML Diagrams

e Click either Next to proceed to the next step or Finish to finish extracting a structure

(Figure 98).
BT Extract Structure...
() 1. Create a classifier Mame: | FrontWwheelsAssembly
() 2. Select port{s) visitilty: | public ~
(#) 3. Create a property et [E— v

Specify attributes {name,
wisibility and aggregation) of
the new property, to by typed
ey the newby-created classifier
insktep 1.

[Firish H Cancel][Help

Figure 99 -- Step 3 - Create a property Pane

5. Step 3: Create a property:
e The selected parts will be replaced by a new property which is typed by the classifier

in Step 1. Enter the name, visibility, and aggregation of the new property
(Figure 99).

e Specify the name of the new property in the Name box (Figure 99).
e Select the visibility of the new property from the Visibility box (Figure 99).

e Select the aggregation kind of the new property from the Aggregation box
(Figure 99).
e Click Finish to finish extracting a structure (Figure 99).
6. Figure 100 shows the IBD after the structure was extracted. Since it preserves the diagram

space of the previous structure, the original diagram will have minimal distortion and the exist-
ing layout will remain.

SysML Diagrams

I

™, (L8] .
trsm : Transmission olif t2 : Torgque
A
1]

torgueln : Torgue

==hlock=>
frontWheelsAssembly : FrontWheelsAssembly

- leftwvheel : Frordwwhesl
gl Targque spline Eﬂ I_:l
torquedut ; Torgue
il
ice : InternalCombustionEngine

==hlocks== t1: Torgue

fi : Fuellnjector [4] Y

4 tram

ffclist [:l
[*1

L [
Part © ICEFuelFitting

PH
fuelSupply © Fuel

rightvheel ; Frontwheel
[]

Figure 100 -- Internal Block Diagram After Extracting a Structure

7. You can check how the automatically-created new Block looks like by right-clicking the part and
select Go To > Type <name> to select the Block in the browser (Figure 101).

Specification Enter
Symbol(s) Properties. .. Alt+Enter
pu——— Go Ta » | Usaqge in Diagrams
frontWheelsAssembly : FrontWheelsAssem Refactor 4 |Q Type FrontWheelsAssembly
Select in Containment Tree Alt+E [Frontwheslshssembly [FSUV
Related Elements »
Skereatype]
Autosize
Edit Compartment »
E| Shiow Sterectypes 3
Show Constraints
Shows Owner 4
Wrap words
Show Classifier
Show Tagged Values »
& Shiove Defaulk Yalue
Chea Clak Toim Y

Figure 101 -- Go To > Type Function

8. Open the created IBD to display the structure which was recently extracted (Figure 102). The
structure view will be ready (Figure 103).

SysML Diagrams

Containment g R o %
=l L = 1 Carrnan
B HSUW Structure N =y
B -7 Relations
E-E HSUY Interfaces abe Text Box
B Wheel |§:‘ Problem
‘} Relations E Rationale
- Balanceweight &
=& Frontiwheeldssembly ' .
B - Relations A Conkainment
Fronkwheeltssembly : —Fiemsndan
S S - Mew Relation
- 1 Frightwhesl : Front Opern in Mew Tab
w1 +leftwheel : Frontw
O -l 1 FrontWwheel [1] Lacl) Enter
- -dif : Differential Specification
- & -FFwy ¢ Fronthesl [1 G0 To
-« [CE +E2 1 Torgue
- CH +t1 ; Torque Refactar 3
B+ Hub Select in Struckure Tree
< Related Elements »

Figure 102 -- The Created IBD of Extracted Classifier

ibd [Elock] Frortywheelstssembly [Frn:nrlt'la“-.lheels.&ssembl':.f]J

— If;.' :FruthWITeel_[ﬂ_ | lefiheel Fr:znlnt'l.mheel

' |
—

leftHalfShaft

L]
¥
= dif : Differential

rightHalf=hatft

12 Torgue

spling 110 Toroue
>

tram

&
- —0&l=———. _
rfw : FrontWheel [1] | Noft¥heel: Fro

| >

eel

Figure 103 -- Displayed Extracted Structure

5.2.6 Using SysML IBD Elements

Flow Port

In general, a port / flow port should be defined in a BDD. However, you can also create a flow port on a part in
an IBD by using the IBD toolbar button.

SysML Diagrams

To create a flow port on a part:

1. Click the Flow Port button either:
e on the IBD toolbar, or

e in the smart manipulator of the part (Figure 104).

7

hlock]]

==hlock==

: Part1 =

: Hriowron]
E

Figure 104 -- Part Smart Manipulator - Flow Port

2. If you click the Flow Port button on the IBD toolbar, select a part where the flow port will be cre-
ated (Figure 105). If you clicked the smart manipulator of the part, go directly to step 3.

ibd [Block] Block [EFIl:u:k1]J

==hlock==
partia.part2a.partda : Block5

==hlock==
partib : Block3

2=hlockss = &l
part3a.partda : Block5

Figure 105 -- Flow Port Created on a Part

3. Select a port type in the Select Port Type dialog (Figure 106). The flow port will then be cre-
ated, having an ‘inout’ direction.

SysML Diagrams

[Select Port Type

o <Mane =
EI@ Data
E}- ¥ Relations
m MO Cuskarnization For SysML [MD_cuskomization_for_S
m ML Skandard Profile [UML_Skandard_Prafile,xml]
@, SywsML Profile [SysML Prafile, mdzip]
- Assembly
- Elacki
& Elackz
- Elackz
- Elack4
.. Blocks
B Partl
B Part2
= 3
B Port2

| 2

b
< | >
5

[Create] [Clone]

Figure 106 -- Select Port Type Dialog

4. You can change its direction using the port shortcut menu (Figure 107). Note that, without a
direction, the flow port will be just like a normal port (it will not enforce any direction on the
item(s) flowing in/out of the port).

84 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

==blocks= ‘
Part1b : Block3

==hlock==

= | ‘lirlnwport D MWalue Type

Part3a.Partda : Block5 . =pecification o
Symbol(s) Properties. .. Alk-+Enter
Go To]
Refactor b
Select in Containment Tree Alk+E
Related Elements b
Stereotype]
Edit Compartment »
Show Stereatypes »

Show Tagged values
Show Provided Inkerfaces

Show Required Interfaces

Type]

public

protected

package

private

Direction] in

Is Conjugated out

inaut

Figure 107 -- Flow Port Shortcut Menu - Flow Port Direction

NOTE ™ The Flow Port direction must be defined.

ItemProperty |
Item Property is the only attribute of Item Flow. An ltem Flow describes the flow of items across a connector or
an association. If an Iltem Flow is assigned to a connector, in general, you can specify this optional attribute,

Item Property, to relate the flowing item to the instances of the connectors’ enclosing block.

In general, Item Flows (and Item Property) are defined on connectors in IBDs.

To create an Item Flow having the Item Property tag initialized on a connector:

1. Either:
e (i) click the Item Property button on the IBD diagram toolbar, and then select the
connector, or

o (ii) click the Item Property icon on the connector smart manipulator menu, or
e (iii) drag the property to be used as the item property, and drop it to the connector.
2. The Item Flow / Item Property dialog will then open (Figure 108).

SysML Diagrams

E Item Flow [ltem Property E|

Select or create elements those will represent conveyed
information circulating From source ko karget in given direction,

Ttern Flow: [=MEYW = - |
Direction: [Frompbtope B4
Conveyed Classifiers: | | Z]
Iterm Property: | | Z]

Figure 108 -- Item Flow / Item Property Dialog

3. The existing item flows on the selected connector can be selected for setting the item property
using the Item Flow drop-down menu. The item flows, whose realizing connector property con-
tains the selected connector, will be listed in this drop-down menu (Figure 109).

E ltem Flow I ltem Property E'

Select or create elements those will represent conveyed
information circulating From source ko barget in given direction.

Item Flow:; <MEW = -

Direction:

<MEW =

ItemFlow:g[B: :pb - C::pc]

Conveyed Classifiers:

Ikem Property:

rMurmber of elements - 2) —

Figure 109 -- Item Flow / Item Property Dialog - Item Flow Selection

4. You can also create a new item flow by selecting <NEW> in the drop-down menu.
5. In the Item Flow / ltem Property dialog, you can also choose the direction of the Item Flow from
the Direction drop-down menu (Figure 110).

86 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

E Item Flow [ltem Property E'

Select or create elements those will represent conveyed
information circulating From source ko karget in given direction,

Ttern Flow: [=MEYW = - |

Direction: Fram pb To po W

Fraom pb To po

Conveyed Classifiers: [o
Iterm Property: | | Z]

Figure 110 -- Item Flow / Item Property Dialog - Direction Selection

6. Click the browse button ... next to the Conveyed Classifiers box. The Select Conveyed Classi-
fier dialog will open (Figure 111).
7. Select a classifier to be used as the Conveyed Classifier and click OK.

[X select Conwveyed Classifiers r‘>__(|

Search By Mame:

|
ﬂ Tree |

- <UMSPECIFIED >
E-E5 Data

(Mumber of elements - 16)

Eawa2 %

[K] [Cancel] [Multiple Selection ==

Figure 111 -- Select Conveyed Classifiers Dialog

8. Click the browse button ... next to the Item Property box. The Select Item Property dialog will
open (Figure 112).
9. Select a part (property) to be used as the Item Property and click OK.

87 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

[select Item Property

part

Figure 112 -- Select Item Property Dialog

10. Click OK in the Item Flow / Item Property dialog. An ltem Flow having the selected property as
its Item Property will then be created on the connector.

NOTE

You can create a new conveyed classifier on either a new item flow or on the existing
item flow by dragging a classifier and dropping it to the connector or association. The
dropped classifier will be a conveyed classifier of the item flow.

5.3 SysML Package Diagrams

Package diagrams typically enable you to organize models by partitioning model elements into packageable
elements and establishing dependencies between packages and/or model elements within these packages.
Since Package diagrams are used to organize models in packages and views, they can include a wide array of
packageable elements.

A package is a construct that enables you to organize model elements, such as use cases or classes, into
groups. Packages define namespaces for packageable elements. Model elements from one package can be
imported and/or accessed by another package. This organizational principle is intended to help establish
unique naming of the model elements and avoid overloading a particular model element's name. Packages
can also be shown on Block Definition diagrams or Requirements diagrams.

SysML Diagrams

5.3.1 SysML Package Diagram Metamodel and Elements

Icon

bdd [Maodel] Data| @ Yiew Metabdodel]J

==thetaclazzs==
Package

Fa

==stereatypes==
View
[Package]

Figure 113 -- View Metamodel

Description
Package [UML]:

A package is a namespace for its members, and it can contain other packages. Only
packageable elements can be owned by members of a package. By virtue of being a
namespace, a package can import either individual members of other packages, or all
the members of other packages.

View [SysML]:

A view is a representation of a whole system from the perspective of a single viewpoint.
A view can only own element import, package import, comment, and constraint ele-
ments.

bdd [Mocel] Data| @ViewF‘uirﬂ Metatdoce]]J

==metaclazzs==
Class

=

==sterectypes==
Viewpoint
[Clasz]

Figure 114 -- Viewpoint Metamodel

SysML Diagrams

Icon Description
ViewPoint [SysML]:

) A viewpoint is a specification of the conventions and rules for constructing and using a
view for the purpose of addressing a set of stakeholder concerns. The languages and
methods for specifying a view can reference methods and languages in another view-
point. They specify the elements expected to be represented in the view that may be
formally or informally defined.

bdd [Model] Data[@ Conform hetablodel]J

==metaclass==
Dependency

==stereatypes==
Conform
[Dependency]

Figure 115 -- Conform Metamodel

Icon Description
Conform [SysML]:

A A Conform relationship is a dependency between a view and a viewpoint. The view
conforms to the rules and conventions specified in the viewpoint.

5.3.2 SysML Package Diagram Toolbar

Button (hot

Element key)
Package:
See Section 5.3.1 for description. B
(P)
Model [UML]:
|

A Model is a special kind of Package. It contains a (hierarchical) set of ele-
ments that describe the physical system being modeled. A model owns or
imports all the elements needed to represent a complete physical system
according to its purpose.

SysML Diagrams

Element
View:
See Section 5.3.1 for description.

ViewPoint:
See Section 5.3.1 for description.

Conform:
See Section 5.3.1 for description.

Package Import [UML]:

A Package Import is defined as a directed relationship that identifies a pack-
age whose members are to be imported by a namespace.

Element Import [UML]:

An Element Import is defined as a directed relationship between an importing
namespace and a packageable element. The name of the packageable ele-
ment or its alias are to be added to the namespace of the importing
namespace.

5.3.3 Using SysML Package Diagram Elements

Package |

You can display the name of a package either on top of it or on its tab.

To display a package name:

Button (hot
key)

Em

1. Right-click a package and select Header Position on the shortcut menu (Figure 116).

SysML Diagrams

|

Package Name

A
2

Specification Enter
Symbol(s) Properties. .. Alt+Enter
Mew Diagram]
Go To 4
Refactar »
Select in Containment Tree Alt+B

Related Elements

Tools

Stereotype

Requirement ID Mumbering. ..

Edit Compartment

Shiow Stereotypes
Show Tagged vYalues
Shiow Cwner

rap \Words

Show Elements List

Header Position

> |I[#] Ton

In Tab

Figure 116 -- Package Shortcut Menu: Header Position

2. Select either (i) Top to display the package name on top (Figure 117) or (ii) In Tab to display it
in the tab (Figure 118).

|

Package Name

Figure 117 -- Package Name on Top

You can also show a list of elements owned by a package.

To show an element list:

Package Name|

Figure 118 -- Package Name in Tab

1. Right-click a package and select Show Elements List on the shortcut menu (Figure 119).

2. The element(s) owned by the package will then be displayed in the package (Figure 120). If the
package owns no element, the package will look like in Figure 121.

SysML Diagrams

[] [

data

5 Specification Enter

o Symbol{s) Properties. .. Al+Enter
Mesw Diagram]
Go To r
Refackar b
Select in Containment Tree Alk+B
Related Elerments b
Tools b
Stereatype]

Requirement ID Mumbering. ..

Edit Compartment 3

Show Stereotypes r
Show Tagged Yalues

Show Owaner b

Wrap Words

| Show Elements Lisk

Header Position 3

Figure 119 -- Package Shortcut Menu: Show Elements List

data|

El Block
El Block1
=l Block2
El Block3

EISE& data
5

¢ IBD
= BDD

Figure 121 -- Element List is not Shown
Figure 120 -- Element List is Shown

View i and Viewpoint @

The Viewpoint of a View is derived from the supplier of the "conform" dependency whose client is the View
itself.

™\ A view can only own element imports, package imports, comments, and constraint elements.
N A viewpoint cannot own any operation nor attribute.

5.4 SysML Parametric Diagrams

Parametric diagrams can be defined as restricted forms of IBDs. They are similar to IBDs except that the only
connectors allowed are binding connectors, each having at least one end connected to a constraint parameter.

SysML Diagrams

A Parametric diagram includes the usage of a constraint block to constrain the properties of another block. It
contains constraint properties and constraint parameters as well as other properties from within that internal
block context. All properties displayed, other than the constraints themselves, must either be bound directly to
a constraint parameter or contain a property that is bound to a constraint parameter (through any number of
containment levels). A constraint block generally contain many constraints, each of them containing many con-
straint parameters.

Constrained properties typically have simple value types that can also carry units, quantity kinds, and probabil-
ity distributions. This allows for a value property that may be deeply nested within a containing hierarchy to be

referenced at the outer containing level. The context for the usages of constraint blocks must also be specified
in a parametric diagram to maintain the proper namespaces for the nested properties.

The state of the system can be specified in terms of the values of some of its properties. A change in state will
result in a different set of constraint equations to be recalculated. This can be accommodated by specifying
constraints that are conditioned on the value of the property with state.

Parametric diagrams can be used to support trade-off analysis. A constraint block can define an objective func-
tion to compare alternative solutions.

5.4.1 SysML Parametric Diagram Metamodel and Elements

For the description of the SysML properties, MagicDraw SysML properties, and flow port metamodels, refer to
the ‘SysML Internal Block Diagrams (IBD)’ section.

bdd [Model] Data [2] Parametric elements]J bdd [Mode]] Deta [Binding Connector U
zzmetaclazs== ==metaclazs==
Property Connector
==metaclazs== ==stereatypes==
Class Invisible5Stereotype
[Eletnent]
7%
[l [l T
==stereatypes==
<estereotyper> sstarealypes> BindingConnector
moe objectiveFunction [Cl:?nnectnr]
[Property] [Clazs, Property]
Figure 122 -- moe and Objective Function Metamodel Figure 123 -- Binding Connector Metamodel
Icon Description

Moe [SysML]:

moe (measure of effectiveness) represents a parameter whose value is critical for
achieving the desired cost effectiveness mission.

Objective Function [SysML]:

o |An Objective Function (also known as 'optimization’ or 'cost function') is used for deter-
mining the overall value of an alternative in terms of weighted criteria and/or moe's.

SysML Diagrams

Icon

Description
Connector [UML]:

A connector is used for binding two ports together, demonstrating relationship between
those ports. A connector can be typed by an association. A logical connector can be
allocated to a more complex physical path depicting a set of parts, ports, and connec-
tors.

Binding Connector [SysML]:

A Binding Connector is a connector which specifies that the properties at both ends of
the connector have equal values. If the properties at both ends of a binding connector
are typed by DataTypes or ValueTypes, it means that the instances of the properties at
both ends must hold equal values, recursively through any nested properties within the
connected properties. If the properties at both ends of a binding connector are typed
by Blocks, it means that the instances of the properties must refer to the same block
instance. As with any connector owned by a SysML Block, each end of a binding con-
nector may be nested within a multi-level path of properties accessible from the owning
Block. The NestedConnectorEnd stereotype is used to represent such nested ends,
just as for nested ends of other SysML connectors.

5.4.2 SysML Parametric Diagram Toolbar

Element

Button
(hot key)

Value Property [MDSysML]:

A Value Property is a property that specifies a quantitative property of its con-
taining Block. Every Value Property is typed by either a SysML Value Type or [
UML Data Type. Value Properties are displayed in the ‘values’ compartment.

Part Property [MDSysML]:

A Part Property is a property that specifies a part with strong ownership and

coincidental lifetime of its containing Block. It describes a local usage or role L]
of the typing Block in the context of the containing Block. Every Part Property

has ‘composite’ AggregationKind and is typed by a Block. Part Properties are

displayed in the ‘parts’ compartment.

Shared Property [MDSysML]:

A Shared Property is a property that specifies a shared part of its containing
block. Every Shared Property has ‘shared’ Aggregationkind and is typed by a L]
block. Shared Properties are displayed in the ‘references’ compartment.

Reference Property [MDSysML]:

A Reference Property is a property that specifies a reference of its containing

Block to another Block. Every Reference Property has ‘none’ AggregationKind L]
and is typed by a block. Reference Properties are displayed in the ‘refer-

ences’ compartment.

Constraint Property [SysML]:

A Constraint Property is a property that specifies the constraints of other prop-

erties in its containing Block. Every Constraint Property is typed by a Con-
straint Block. Constraint Properties are displayed in the ‘constraints’

compartment.

SysML Diagrams

Button

Element (hot key)

Distributed Property [SysML]:

A Distributed Property is a property of a Block or a Value Type, used for apply-
ing a probability distribution to the values of the property. Specific distributions
can be defined by applying a subclass of the DistributedProperty stereotype to
the property.

Select Nested Part:

Click this button to display a nested part inside a given context. For more infor-
mation, see Section 5.2.3 SysML IBD Specific Features: (vii) Select Nested
Part.

Flow Property [SysML]:

A FlowProperty signifies a single flow element that can flow to/from a block.
Flow properties are defined directly on blocks or flow specifications that are
those specifications which type the flow ports.

Flow properties enable item flows across connectors connecting parts of the
corresponding block types, either directly (in case of the property is defined on
the block) or via flowPorts. A flow property’s values are either received from or
transmitted to an external block.

Moe:

See Section 5.4.1 for description.

Objective Function:
See Section 5.4.1 for description.

Port [UML]:

A Port defines an interaction point on a Block or a part, allowing you to specify
what can flow in/out of the Block/part or what services the block/part requires
(expects) from or provides (offers) to its environment. Ports are connected by
connectors to other parts or ports.

Flow Port [SysML]:

A Flow Port is a port that specifies the input and output items that can flow
between a Block and its environment. Flow Ports are interactions points
through which data, material, or energy “can” enter or leave the owning Block.
The specification of what can flow is achieved by typing the Flow Port with a
specification of things that flow. This can include typing an atomic Flow Port
with a single type (Block, Value Type or Signal) representing the items that
flow in or out, or typing a non-atomic Flow Port with a Flow Specification which
lists multiple items that can flow. In general, Flow Ports are intended to be
used for asynchronous, broadcast, or send-and-forget interactions. Note that
only non-atomic Flow Ports can be conjugated. Once conjugated, all the direc-
tions of the typing Flow Specification's items are negated.

Connector:
See Section 5.4.1 for description.

(€)
Binding Connector:
See Section 5.4.1 for description.

SysML Diagrams

Button
Element (hot key)
Item Property [SysML]:
An optional property that relates the flowing item to the instances of the con- E|

nector’s enclosing block. This property is applicable only for item flows
assigned to connectors. The multiplicity is zero if the item flow is assigned to
an Association.

5.4.3 SysML Parametric Diagram Specific Features

SysML Parametric Diagram features include Display Parameters and the other seven specific features similar
to IBD. These are:

(i) Display Parts (Diagram shortcut menu)

(ii) Display Ports (Property shortcut menu)

(iii) Edit Compartment (Property shortcut menu)

(iv) Show Default Value and Show Slot Type (Property shortcut menus)
(v) Provided/Required Interfaces (Port shortcut / smart manipulator menu)
(vi) Display/Suppress Structure Compartment (Property shortcut menu)
(vii) Select Nested Part

For more information on these features, see the ‘SysML IBD Specific Features’ section.
(i) Display Parameters (Property shortcut menu)

This feature enables you to display the constraint parameters of a constraint block on a Constraint Property
typed by the Constraint Block.

To display constraint parameters:

1. Either (i) select Display Parameters on the property shortcut menu (Figure 124) or (ii) click the
Display Parameters icon on the property smart manipulator (Figure 125).

1 -]
| ==constraint== |
: Cons| Specification Enter

b . Symbol(s) Properties. .. Alk+Enter
(.EHD Ta b -
Refactor]
Select in Containment Tree AlL+E
Related Elerments] |
Skerectype b | Display Parameters
Edlt Campartment b i
ghnw Stereotypes [: |
Shiows Cwiner) Ised By, .. Chrl+Al+LU
WWrap Words Depends Cn... ChrlHAlE+D
Showw Tagged Yalues [

Figure 124 -- Shortcut Menu for Displaying Constraint Parameters

SysML Diagrams

==conztraint== =
: Constraint Block

Al
e}

|Di5|:-la1,r Parametersl

Figure 125 -- Smart Manipulator for Displaying Constraint Parameters

2. The Select Parameters dialog will open and the constraint parameter(s) owned by the type of

the constraint property will be listed in the dialog (Figure 126).
3. Select constraint parameters to be shown on the constraint property symbol. The selected con-

straint parameters will be displayed as small square boxes (Figure 127).

E Select Parameters

: Select Parameters

b -parameteri [Constraink Block)
B -parameterz [Conskraint Elock]
- b -parameters [Constraink Block]

Figure 126 -- Select Parameters Dialog

==constraint==
: Constraint Block

e T

parameterd parameter? parameter]

Figure 127 -- Constraint Property with its Constraint Parameters

5.4.4 Using Parametric Diagram Elements

Constraint Blocks

Constraint blocks can only be defined on a BDD or a package diagram. A constraint block typically contains
one or more constraint parameters, which are bound to properties of other blocks in a surrounding context

where the constraint is used.

98 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

All properties of a constraint block are constraint parameters, with the exception of constraint properties that
hold the internally-nested usages of other constraint blocks. Constraints are specified only in an informal lan-
guage, but a more formal language such as OCL or MathML could also be used.

Constraint blocks can only be defined on a BDD or a SysML package diagram.

Binding Connectors ./

Binding connectors enable you to bind each constraint block parameter to the property of another block in the

surrounding context of that constraint block. Binding connectors are the only connectors allowed to bind con-
straint parameters to the properties of other blocks.

To create a binding connector:

1. Click either (i) the Binding Connector button on the Parametric diagram toolbar or (ii) the
Binding Connector icon on the smart manipulator of a constraint parameter or a part (prop-
erty) (Figure 128 and Figure 129, respectively).

==conztraint==

: Constraint Bljk E

=

Binding Connectar

value property : Value Type
2 a

n
e
5
2
=
w
‘n T

Figure 129 -- Smart manipulator of a part

2. If you have clicked (i) the Binding Connector button on the toolbar, select a part as the con-
nector’s origin, but if you clicked (ii) the Binding Connector icon from the smart manipulator,
go directly to step 3.

3. Select a part / constraint parameter as the connector’s destination.

5.5 SysML Requirement Diagrams

SysML Requirement Diagrams provide modeling constructs to represent text-based requirements and relate
them to other modeling elements. These requirement modeling constructs are intended to provide a bridge
between traditional requirement management tools and other SysML models.

Requirement diagrams display requirements, packages, other classifiers, test cases, rationales, and relation-
ships. Possible relationships available for Requirement diagrams are containments, deriveReqt and require-
ment dependencies (‘Copy’, ‘Refine’, ‘Satisfy’, “Trace’, and ‘Verify’). The callout notation can also be used to
reflect the relationships of other models.

Requirements can also be shown on other diagrams to illustrate their relationships to other modeling elements.

SysML Diagrams

5.5.1 SysML Requirement Diagram Metamodel and Elements

bdd [Model] Data | @ Requirement metamadel]J

==metackhss==
Class

!

(]

==sterectypes>=
Requirement
[Class]
A

$
CE

] ==steredtypes= 1
extendedRequirement
[Clas=s]

a

LF [l 1 [F

==ztereatypes= ==ztereatype== ==ztereatypes= ==ztereatype==
performanceRequirement usabilityRe quirement interfaceRequirement physicalRequirement
[Class] [Class] [Class] [Class]
A LCE
I_—D-I ==sterectype==
==sterentypes= businessRequirement
designConstraint

[Class]
[Class]

==zterealype==
functionalRequirement
[Clazs]

Figure 130 -- Requirement Metamodel

Icon Description
Requirement [SysML]:

® |A Requirement specifies a capability or a condition that must (or should) be satisfied.
Requirements are used to establish a contract between the customer (or other stake-
holders) and those responsible for designing and implementing the system. A require-
ment can also appear on other diagrams to show its relationship to other modeling
elements.

Extended Requirement [SysML]:

g An Extended Requirement adds some properties to the requirement element. These
properties are important for requirement management. Specific projects should add
their own properties.

Functional Requirement [SysML]:

" |A Functional Requirement is a requirement that specifies a behavior that a system or
part of a system must perform.

Interface Requirement [SysML]:

1 |An Interface Requirement is a requirement that specifies the ports for connecting sys-
tems and parts of a system. Optionally, it may include the items that flow across the
connector and/or the Interface constraints.

Performance Requirement [SysML]:

|A Performance Requirement refers to a requirement that quantitatively measures the
extent to which a system or a system part satisfy a required capability or condition.

SysML Diagrams

Icon Description
Physical Requirement [SysML]:
A Physical Requirement specifies the physical characteristics and/or physical con-
straints of a system, or a system part.
Design Constraint [SysML]:
= |A Design Constraint is a requirement that specifies a constraint on the implementation
of a system or on part of it.
Business Requirement [MDSysML]:
A Business Requirement is a requirement that specifies characteristics of the business
process that must be satisfied by the system.
Usability Requirement [MDSysML]:
u |A Usability Requirement specifies the fithess for use of a system for its users and other
actors.
bdd [Model] Data | @Tegtcase Metamadel]J bdd [Model] Data [@Requiremem related Metatdodel]J
==metaclass== | |==metaclass== ==metaclassss
Operation Rahavior NamodEfemant
==stereatype==
TestCase
[Behavior, Operation) ==stereotype=»
. - . RequirementRelated
-Merifies ;. Requirement [*] [NamedElement]
Figure 131 -- Test Case Metamodel
Figure 132 -- Requirement-related Metamodel
Icon Description

Test Case (Activity / StateMachine / Interaction) [SysML]:

a3 |Atestcase is a method for verifying a requirement.

=

SysML Diagrams

Icon

bdd [Model] Data @ Requirement relationships Metatoce!]J
==metackzz==
Abstraction
==sterealypes==
trace
[&bstraction]
| | |
J% J’u J’ D J’tp
==zteredtype== ==steredtype== ==sterectype== ==sterectype==
Satisfy Verify DeriveReqt Copy
[Abstraction] [Akstraction] [Akstraction) [Abstraction]

Figure 133 -- Requirement Relationship Metamodel

Description
Trace [UML]:
A ‘Trace’ relationship is a dependency that provides a general purpose relationship
between a requirement and any other model elements.
Satisfy [SysML]:

A 'Satisfy' relationship is a dependency between a requirement and a model element
that fulfills that requirement. As with other dependencies, the arrow direction points
from the satisfying (client) model element to the (supplier) requirement that is satisfied.

Verify [SysML]:

A 'Verfiy' relationship is a dependency between a requirement and a test case or a
model element that can determine whether the system fulfills the requirement. As with
other dependencies, the arrow direction points from the (client) test case to the (sup-
plier) requirement.

Derive [SysML]:

A 'Derive' relationship is a dependency between two requirements (a derived require-
ment and a source requirement), where the derived requirement is generated or
inferred from the source requirement.

Copy [SysML]:

A 'Copy' relationship is a dependency between a supplier requirement (master) and a
client requirement (slave), specifying that the client requirement text is a read-only copy
of the supplier requirement text.

SysML Diagrams

5.5.2 SysML Requirement Diagram Toolbar

Button
Element (hot key)
Requirement:
See Section 5.5.1 for description. "
Extended Requirement:
See Section 5.5.1 for description. =
Business Requirement:
See Section 5.5.1 for description.
Usability Requirement:
See Section 5.5.1 for description. [
Functional Requirement:
See Section 5.5.1 for description. 1
Interface Requirement:
See Section 5.5.1 for description. [
Performance Requirement:
See Section 5.5.1 for description. o
Physical Requirement:
See Section 5.5.1 for description.
Design Constraint:
See Section 5.5.1 for description. o
Satisfy:
See Section 5.5.1 for description. A
Derive:
See Section 5.5.1 for description. A
Copy:
See Section 5.5.1 for description. A
Trace:
See Section 5.5.1 for description. A
Verify:
See Section 5.5.1 for description. A
Refine [UML]:
A 'Refine' relationship is a dependency intended to describe how a model ele- A
ment or a set of elements are used to further refine a requirement. Alterna-
tively, it can be used to show how a text-based requirement refines a model
element.
103 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

Button
Element (hot key)
Test Case (Activity / StateMachine / Interaction):
See Section 5.5.1 for description. Cw)

5.5.3 SysML Requirement Diagram Specific Features
(i) Changing the Requirement Type

Use this feature to change one or several requirement types to another requirement type.

To change one or more requirement types to another requirement type:

1. Right-click a requirement(s) whose type(s) you would like to change and select Refactor >
Convert To (Figure 134).

+::ex‘tendedRequireme cnedficati Ent
IS0 9000 pecification nker
FE
Symbol(s) Properties. .. Ale+Enter
Mew Diagrarm L3
GoTo]
Refactor » m Canvert Ta T
Select in Containment Tree Ale+E Feplace With.., £1 Component
Related Elements » 8| DataType
Stereotype L B Erumeration
Requirerment ID Mumbering...) Interface
Edit Compartment L3 [E Primitive Tvpe
Presentation Options L3 More General L3
| Mare Specific P || CB businessRequirement
[0 | designConstraint
A functionalRequirement
Create Instance. .. [0 interfaceRequirement
A performanceRequirement
Risk.]
[l physicalRequirement
‘rerify Method] e 4
- [0 usabilityRequirement

Figure 134 -- Change Requirement Type Shortcut Menu - More Specific

SysML Diagrams

+<<e>dendedRequiremerd=>

ﬂ 150 5000 Specification Enter
Symbal{s) Properties. .. Ale+Enter
Mew Diagram 3
GoTo]
Refactor 4 m Canvert To] | 0| Arkifack
Select in Containment Tree Ale+B Replace With. .. £] | Component
Related Elements » | Data Type
Stereotype r [E Enumeration
Requirerment ID Mumbering.. .) Interface
Edit Compartment » B Primitive Type
Presentation Options 3 | More General 4 | A Requirement
More Specific »
Create Instance. ..
Risk.]
wetify Method »
-

Figure 135 -- Change Requirement Type Shortcut Menu - More General

2. Select More Specific (Figure 134), More General (Figure 135), or Other. The requirement
type options will be displayed.

3. Select a new requirement type from the options. The type(s) of the selected requirement(s) will
then be changed.
(if) Creating a SysML Requirement Diagram for Sub-requirements

MagicDraw SysML provides an easy way to create a SysML requirement diagram for sub-requirements of the
selected requirement symbol.

To create SysML requirement diagram for sub-requirements:

1. Click on the requirement symbol in which you want to create the SysML requirement diagram
for its sub-requirements.
2. Click the Create diagram for sub-requirements button from the smart manipulator

(Figure 136).

“ul

LY L
a

LY
&,
(=

L «reguirement:
E- Performance
u

B m % e G

| Create diagram for sub-requirementl

Figure 136 -- Smart Manipulator Buttons on the Requirement Symbol

3. The new SysML requirement diagram for the sub-requirements will then be created (Fig-
ure 137) with the same name as that of the selected requirement.

SysML Diagrams

redq [recquirement] Perfarmance [Performance]J
srecuirements
Performance
5+l
sreguirements sreduirements sreguirements sreguirement:
FuelEconomy Braking Acceleration OffRoadCapability
lg="22" ld="21" jd="24" g ="2.3"
Text="The Hybrid Text="The Hybrid S Text="The Hybrid SV Text="The Hybrid SV
HSLY shall have shall have the hraking shall have the shall have the off-road
dramatically better fuel capahility of a typical acceleration of a typical | |capahility of a trpical
ecanamy than a typical SLh " Sl Sl
S

Figure 137 -- SysML Requirement Diagram for Sub-requirements

5.5.4 Numbering Requirement IDs

Numbering requirements’ IDs is a trivial, time-consuming task, in particular, when working with a large SysML
project. Starting with version 16.5, SysML Plugin provides an additional feature to facilitate such a task:
Requirement ID Numbering. This feature consists of three functionalities: (i) Manual Numbering, (ii) Auto-
matic Numbering and (iii) Suggested Solutions for Invalid Requirement's ID.

(i) Manual Numbering

This functionality refers to the use of the Requirement ID Numbering dialog to number requirements’ IDs.

To number requirements’ IDs manually using the Requirement ID Numbering dialog:

1. Open the Requirement ID Numbering dialog by selecting the Requirement ID Numbering
option on:
e the diagram shortcut menu of the package containing the requirement(s), for example, the
HSUV Specification package in Figure 138, or of the requirement you would like to number;
or

e the browser shortcut menu of the package containing the requirement(s) or of the
requirement you would like to number; or

e the diagram shortcut menu.

SysML Diagrams

Figure B.11 Establishing HSUY Requirements Hiers

.

HSUV Specification

Al
L=k

D

A
AT

A

¥ =4

==requiremert== x
Capacity

|d —nn
TEH: nn

equirement=> [m\
:ngerCapacity

==trequirement== [w
FuelCapacity

d="472"
Text=""

Specification

Symbol(s) Properties. ..

Enter

Alk+Enker

Mew Diagranm

Go To

Refactar

Selact in Containment Tree
Related Elernents

Taools

Alt+E

Sterectype

Requirement ID Mumbering. .,

Autasize

Edit Compartment

Show Stereotypes

Show Constraints

Figure 138 -- Requirement ID Numbering Shortcut Menu

=<reguiremen

Ergonomic

ld=""

TEH —nn

2. The Requirement ID Numbering dialog will open (Figure 139). Select, for example, the HSUV
Specification package in the browser on the left-hand side of the dialog. The requirements
owned by the package will appear in the Requirements pane on the right-hand side of the dia-
log (Figure 139).

D] Requirement ID Numbering

E-E Data

EFE HsUwMadel
----- [Explanations
- H3UY Analysis
(- H3UY Behavior

A Z Perfarmance

A d.2 Range

A d.4 Power

B} Maxacceleration
L.y Max Acceleration
(-] HaUW Structure

| >

[A d.1 RegenerativeBraking

Requirements |

X)

i)

[Eco-Friendiness

[Ergonomics
A Qualification

Mame

e

Mumbering Style: | v|
Prefix: | V|
Sepatator: | V|

Renumber

Cancel

Figure 139 -- Requirement ID Numbering Dialog

3. In the Requirements pane, select the requirement(s). Use the Edit, Create/Remove,
Increase, Decrease, or Renumber button to number the selected requirements’ IDs.

107

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

NOTE These five buttons are used to add / edit / remove the IDs of the requirements directly
owned by the package or the requirement of interest (selected in the browser on the
left-hand side of the Requirement ID Numbering dialog) only.

Table 3 -- Requirement ID Numbering Buttons
Button Multiple | Enable Criteria Function
Selection
Support

Edit N Enabled when select a requirement | To arbitrarily number the ID of a

with non-empty ID. requirement.

Create/ Y Create button is enabled when all | To assign or unassign ID(s) to the

Remove selected requirement(s) has(have) | selected requirement(s).

no ID(s). Otherwise, Remove but-
ton is enabled.

Increase Y Enabled when all selected require- |To increase the ID(s) of the selected

ment(s) has(have) ID(s). requirement(s) by one.

Decrease |Y Enabled when all selected require- |To decrease the ID(s) of the selected

ment(s) has(have) ID(s). requirement(s) by one.

Renumber |n/a Always enabled. To renumber all the requirements
appeared in the Requirements pane
on the right-hand side of the
Requirement ID Numbering dialog,
starting from ‘1"

4. For example, if you select the Renumber button, the requirements under the package selected
in the browser on the left-hand side of the dialog will be renumbered using the pre-defined
Numbering Style, Prefix and Separator, as shown in Figure 140.
NOTE e SysML Plugin provides two numbering styles to number requirement IDs: (i)

Consecutive (previously called normal style) and (ii) Multi-Levels (previously called
nested style).
(i) Using the Consecutive numbering style, each requirement ID is numbered with a
prefix, followed by numbers, without any separator.
(i) Using the Multi-Levels numbering style, each requirement ID is numbered with a
prefix, followed by numbers. A separator is used to separate each level of number.
The level will be increased by the containing level of the requirement.

e You can use a character or a symbol, excluding number, as a Separator.

SysML Diagrams

(X

E Requirement ID Numbering
E-E Data # | Requirements

BB HaUMadel

----- £ Explanations

FH-F7 H3UY Analysis

[H-F7 HsUY Behavior

El-F7 HSUY Requirements
[z)= Specification
A " " PowerSourceManagement

E}-CH 2 Performance

I__FI d. 1 RegenerativeBraking

I__FI d.Z Range

I__FI d. 4 Power

@ Maxacceleration

L. Max Acceleration

[FH-F3 HIUY Structure w

Recursive Renumber

Numbering Style: w

jin] Marne

2 [Eco-Friendiness

3 [H Ergonomics
4 A Qualification

Prefix:

Separator:

[Edit] [Remave] [Increase] [Dectease] [Renomber

Figure 140 -- Renumbering Requirements IDs

NOTE e Numbering Style, Prefix and Separator can be defined at a package or a top-level
requirement. A requirement is considered to be top-level only if it is directly owned by
a package, model, or profile. A requirement owned by another requirement is NOT
considered as a top-level requirement. A top-level requirement ID cannot contain any
separator.

e The Numbering Style, Prefix and Separator values defined in an upper-level node
(package, model, profile) will be overridden by the values defined in a lower-level
node (package, model, profile, top-level requirement).

e The ‘Data’ package contains the default Numbering Style, Prefix and Separator
values defined for your project (Numbering Style = Multi-Levels, Prefix = ©, and
Separator = *.').

5. In Figure 140, the requirements in the ‘HSUV Specification’ package (under ‘Data > HSUV-
Model > HSUV Requirements’) were renumbered. Since there is no Numbering Style, Prefix
and Separator values defined in the ‘HSUV Specification’, ‘HSUV Requirements’ and ‘HSUV-
Model’ packages, the values defined in the ‘Data’ package (default) will be used instead (Num-
bering Style = Multi-Levels, Prefix = “, and Separator = *."), as shown in Figure 141.

SysML Diagrams

P Requirement ID Numbering

B3 HAIWModel

£ Explanations
£ HaUW Analysis

3 HSIUM Behavior
|_’—_|t| HSLW Requirements
=SamfHSUY Specification
E-0H 1 Capaciky B
I__FI 1.1 FuelZapacity
A 1.2 PassengerZapacity
“e[H 1.3 Cargo_apacity
—|--[® 2 Eco-Friendiness

t. (A 2.1 Emissions
----- [3 Ergonomics
B[R 4 Qualification

L [H 4,1 SafebyTest v

(2.3

ml

[Recursive Renumber

Mumbering Skyle: | " |

Prefix: | 4 |

Separator: | hd |

lear

Figure 141 -- Example of Numbered Requirements

6. You can change the Numbering Style, Prefix and Separator values defined in the ‘HSUV
Specification’ package (called Package-specific Numbering Configuration) to renumber the
requirements in this package (Figure 142).

110 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

111

P Reguirement ID Numbering

£} HsUYModel ~
-] Explanations
7-F HSUY Analysis
B1-C H3LY Behaviar
El-F HSUY Requirements
=N mmlH5Uv Specification
B8 REC | Capacity B
t[H REC_1/1 FuelCaparity
B REZD_1)Z PassengerCapacity
L. OH REC_1/3 CargoCapacity
-[F RED_# Eco-Friendiness
L CH REC_2/1 Emissions
----- [A RED 3 Ergonomics
El-CA RED 4 Qualification
Lo CH REC)4/1 SafetyTest w

m
L

[Recursive Renumber

Mumbering Skyle: | v |
Prefix: b |
vl

Separator:

Figure 142 -- Customizing Numbering Style, Prefix, and Separator Values Defined for a Package

7. You can click the Recursive Renumber button to renumber all requirements that are recur-
sively contained inside the selected node. The Numbering Style, Prefix and Separator, which
are defined in the selected node, will be used for recursive renumbering. If the Package-specific
Numbering Configuration of the lower-level nodes exists, then a message box will open to ask
whether to replace the existing values with the values of the selected node (Figure 143).

E Question f'5_<|

The PackageC was customized with the different numbering format,
® Do ol wank to overwrite the existing numbering Format of PackageC ¢

£ Yes | [Yes To Al] [Mo] [Mo To al

Figure 143 -- Question Dialog - Recursive Numbering Confirmation

8. You can click the Clear button under the Separator box to remove the Package-specific Num-
bering Configuration. For example, select the ‘HSUV Specification’ package in the browser (Fig-
ure 142) and click the Clear button. The Package-specific Numbering Configuration of the
‘HSUV Specification’ package will then be removed. Thus, the available ‘numbering configura-
tion’ in an owning package will be used instead, which is, in this case, the ‘Data’ package.

9. Click OK (Figure 140) to update the renumbered requirement IDs to your model, or click Can-
cel (Figure 140) to ignore the requirement IDs numbered using this dialog.

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

(if) Automatic Numbering

Once this functionality is turned on, the IDs of the newly-created requirements will be numbered automatically.

To number requirement IDs automatically:

1. Click Options > Project on the main menu. The Project Options dialog will open (Figure 144).

E Project Options gl

General project options

| A A B
Symbols properties skvles z+ =2 3
=

B[Default (Default)
- B
& Shapes <project. dir >

=

Modules path <install,roak =profiles
; <install.root =imodelLibraries
i D“;-«Tt Stedrelotypes . Enable dot natation For associations [false
H-Ed befau mp c Prnper 55 hange ownership of non-navigable asso... true
B¢ Code Engineering - i
Zualified name display skvle Absolute

5-0 Code Generation
:9 Rewverse
-] Jawa Language Options EMF UMLZ output location

Auko synchronize Parameters and Argum... true

-7l C++ Language Options =]

-z C# Language Options Yalidation scope =] Data

2] CORBA IDL 3.0 'a”F"-'a';'E opk Exclude elements from read-only modules true

----- &1 DDL Language Options Mark in kree and diagrams true
Ignared validation suites £ Parameters Synchronization [LML Standarc
Minimal severity A warning [UML Standard Profile: validatio, .,
B

Propagate SyvsML Walues []false

krue

Enable Auto Reguirement's ID Mumbering

Enable Auto Requirement’s ID Numbering
Enable futa Requirement's I0 Mumbering

Reset ko Defaulks

Figure 144 -- Automatic Requirement Numbering in Project Options Dialog

2. Under the SysML group, make sure that the Enable Auto Requirement’s ID Numbering
option is selected (selecting the check box means ‘true’) (Figure 144).

3. The IDs of any newly-created requirements will now be numbered automatically with the Num-
bering Style, Prefix and Separator which are defined in the requirement owner.

NOTE Automatic Numbering will NOT modify any existing ID. Thus, requirements with IDs will
NOT participate in Automatic Numbering.

(iii) Suggested Solutions for Invalid Requirement's ID

When the ID of an requirement element is invalid with respect to the validation constraint ‘Requirement[A]
(Requirement's ID must be unique), the requirement with invalid ID will be highlighted. When select such
requirement, the requirement smart manipulator menu will also propose the suggested solutions (Figure 145,

Figure 147):

SysML Diagrams

1. Open Requirement ID Numbering dialog (Figure 145): this solution will open the Require-
ment ID numbering dialog. The selected requirement will be shown in the requirements list on
your right hand side. The owner of the selected requirement will be selected on the tree in the
panel on your left hand side (Figure 146)

fi?l Open Reguirement I Mumbering dialog
A
- Assign new number
A
- - #TF Ignaore
srequirement: gregquirement:: A
Rx Ry ’7': Select in Yalidation Results
|d:II1II Eﬂd:"1ll - T
TE}:.-t = nn TE}:.-t = nn /ﬁ
& n $/
=

Figure 145 -- Suggested Solution for Open Requirement ID Numbering Dialog

E Requirement ID Numbering El
B[] Data Requirements |
SR =quirements
1D Tame
1 [H Rx
[Recursive Renumber]
Numbering Style: | vl
Prefix: | vl
Separatar: | vl
Clear [Edit] [Remove] [Increase] [Decrease] [Renumber

Figure 146 -- Requirement ID Numbering Dialog

2. Assign New Number (Figure 147): you can also use this solution to automatically re-assign
the new requirement's ID to the selected requirement. The first available correct ID will be
assigned to the requirement automatically.

113 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

(iv) Finding a Requirement

f—’h Open Reguirement I Mumbering dialog
A
- Assign new number
|
- - ~TF Ignaore
sregquirement: greguirements: A
Rx Ry ’7': Select in validation Results
Id="1" Eﬂd="1" T
TEH = nn TEH = nn /ﬁ
[7} u $/
=

Figure 147 -- Suggested Solution for Assign New Number

To find a requirement in Containment Tree and Tree of Requirement ID Numbering dialog:

e Select tree in the containment browser or the tree in Requirement ID Numbering dialog.

e To search for a requirement by its ID, type the ID of the requirement. The matched requirement
will be selected, if found.

U A e ~

'ﬂg Conkainment

Conkainrnent cl X

Search for: 2.1 N =

El-E] Data ~
B Relations
B} HeUyMadel
El- Relations
-5 Explanations
E1-F HSUY Analysis
E1-F7 HSUY Eehavior
-] H5UW Requirements

- Relations
- HSUY Specificatian
A " " Power3ourceManagement
E}-[H 2 Performance

I s R FuelEconony
~[H Z,3 OffRoadCapability
- 2.4 dcceleration

7.1 Braking w

m..

Figure 148 -- Finding requirement by ID in Containment Tree

e To search for a requirement by its name, type “*” followed by the name of the requirement. The
corresponding requirement will be selected, if found.

SysML Diagrams

e Containment

Conkainment Kl X
| = =1 = —_— =
Search For: *OffR.oadCapability
E-EF Data
B} Relations
B HSUYMadel
}' Felations
E‘j Explanations
B HILY Analysis
Bl HSILY Bshavior
Eltl HSLW Requirements
-- - Relations
- HIUY Specification
?uEE""PuwerSnumeManagement
E}I__FI 2 Performance
A 2.2 FuelEconony

2.3 OffRoadCapability
A 2.4 Acceleration
[® 2.1 Braking

Figure 149 -- Finding requirement by name in Containment Tree

NOTE

This type of search cannot find an element if the element is not shown in browser when
searching.

To find the requirement using the Find dialog:

e You can either select Edit > Find... in the main menu, or press Ctrl + F to open the Find dialog.

e To search for a requirement by its ID, select the tab for searching element by tag value in the

Find dialog. In Name combo box, type “Id” and then type the ID of the requirement into the
Value combo box. Click Find button.

SysML Diagrams

116

Gy Search Results

Search Resulks

|§ (i1
£ e

t=v

Ul el

L da]«

El-5earch Resulks
--E From lnaded diagrams (23
E}E Fraom model (1)
Le[H 4.1 CargoCapacity

— Search element by tag walue

Mame |I|:| V|
Yalue v]
Type | o
Scope | | Z]

Search in active diagram onky

[] Load diagrams and autoloadable modules
[] Case sensitive

[] Match whale words only

[] 5earch data unused in diagranns

[] ©rphaned praxies only

[] dawa regular expression

Clear previous results

[Find] [Close]

Figure 150 -- Finding requirement by ID using Find dialog

e To search for a requirement by its name, select the tab for searching element by name. Type
the name of requirement into the Name combo box. Then click browse button (...) after the
Type text field and select the Requirement. Finally, click Find button.

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

Gy Search Results

t=v

—I e —— —
Search Results o Bl | o 0 " B |
M 2 o
E-Search Resulks ~ Search element by name
Iil From laaded diagrams (0] WE =S coeleration v |
E+-E From model (13
be[H 2.4 Acceleration Type | |Z]

Scope | | Z]

Seatch in active diagram only

[] Load diagrams and autoloadable modules
[] case sensitive

[] Match whale wards anly

[] 5earch data unused in diagrans

[] ©rphaned proxies only

[] Java regular expression

Clear previous results

Find] [Close]

Figure 151 -- Finding requirement by name using Find dialog

To find the requirement using the Quick Find dialog:

e You can either select Edit > Quick Find... in the main menu or press Ctrl + Alt + F to open the
Quick Find dialog.

e To search for a requirement by its ID, type the ID of the requirement into the combo box Type
Name in the Quick Find dialog.

Tvpe Mame:

22 g

1 makch Found

_I mi 2.7 FuelEconomy [HSUYModel: :HSUY Requirements: :Performance]

< | >

=leiwla

Figure 152 -- Finding requirement by ID using Quick Find dialog

117 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

e To search for a requirement by its name, type “*” before the name of the requirement in the
combo box Type Name.

Type Mame:

* FuelZapacity E]
1 makch Found

mi 4,2 FuelCapacity [HSUYMadel: :HSUY Requirements::HSLY Specific

< >
EiEminE

Figure 153 -- Finding requirement by name using Quick Find dialog

5.5.5 Using SysML Requirement Diagram Elements

Requirement [d

(a) Using Requirements

A requirement specifies a capability or a condition that a system must (or should) satisfy. The default interpreta-
tion of a compound requirement, unless stated differently by the compound requirement itself, is that all its sub-
requirements must be satisfied for the compound requirement to be satisfied. Subrequirements can be
accessed through the "nestedClassifier" property of a class.

When a requirement nests other requirements, all the nested requirements apply as part of the container
requirement (the requirement that contains all the nested requirements). Deleting the container requirement will
thus delete all the nested requirements it contains; a functionality inherited from UML.

(b) Showing Requirement Tagged Values

Use Show Tagged Values to select a displaying mode for a text and ID requirements; either displaying them on
shapes, in compartments, or not displaying them at all.

To select one of the displaying modes:

1. Right-click a requirement and select Presentation Options > Show Tagged Values. The 3
displaying modes will appear (Figure 154).

SysML Diagrams

==extendedRequirement== |.

E = 150 Specification Enter
Symbolis) Properties. .. Alt+Enter
Mew Diagram]
Go To]
Refactar »
Select in Conkainment Tree Al+B
Related Elements »
Stereatype]

Requirerent 10 Murmbering. ..

Edit Compartment]
Presentation Cpkions [J | Shaow Stereotypes 4
show Owner »
Wrap \Waords
| Show Tagged Values 4 | on Shape
Show Members 4 | In Compartment

Create Instance. ..

Risk ’ Suppress Attributes Do Mok Display
Werify Method 3 Suppress Operations
bt Suppress Signal Receptions

Signal Receptions Sort Mode »

Suppress Structure

ElE]

Suppress Porks

Ports Sort Mode »
-

Figure 154 -- Displaying Mode of text and ID

2. Select one of the displaying modes. The result is shown in Figure 155.

==extendedRequirement== ==extendedRequirement==

1S0 9000
[Id = II.1III
Text=" Text of the
requirament"}

IS0 3000

On shape

|d = II1II
Text=" Text ofthe
requirement”

==extendedRequirement==
IS0 9000

In compartment

Do not display

Figure 155 -- Different Displays of Requirement Elements

(c) Creating Your Own Requirement Type (Subtype)

You can define an additional requirement type by creating a new stereotype that generalizes the requirement
stereotype (Figure 156).

SysML Diagrams

bdd [Model] Data [@Addﬁinnal Fequirement subtype]J

LF

==stereatype==
Requirement

[Class]
£

|

==steredtyre==
Hew Requirement
[Clas=]

Figure 156 -- New Requirement Type

Requirement Subtypes
Al A Functional Requirement is satisfied by an operation or a behavior.

Al An Interface Requirement L1 js satisfied by a port, connector, item flow, and/or a constraint property.

Al A Performance Requirement [s satisfied by a value property.
Al A Physical Requirement is satisfied by a structural element.

Al A Design Constraint L4 s satisfied by a block or a part.

The following table provides the definitions of the non-normative enumerations that are used to type the proper-
ties of the requirement subtypes.

Table 4 -- Non-normative Enumeration for Requirements

Enumeration Enumeration Literals | Function
RiskKind High To indicate an unacceptable level of risk.

Medium To indicate an acceptable level of risk.

Low To indicate a minimal level of risk or no risk.
Verification- Analysis To indicate that verification will be performed by techni-
MethodKind cal evaluation using mathematical representations,

charts, graphs, circuit diagrams, data reduction, or
other representative data. Analysis also includes the
requirement verification under conditions, which are
simulated or modeled; where results are derived from
the analysis of the results produced by the model.

SysML Diagrams

Enumeration Enumeration Literals | Function

Demonstration To indicate that verification will be performed by the
operation, movement, or adjustment of the item under
specific conditions to perform the design functions with-
out the record of quantitative data. Demonstration is
typically considered the least restrictive verification
type.

Inspection To indicate that verification will be performed by exam-
ining the item, reviewing descriptive documentation,
and comparing the appropriate characteristics with a
predetermined standard to determine conformance to
the requirements without the use of special laboratory
equipment or procedures.

Test To indicate that verification will be performed through
systematic exercising of the applicable item under
appropriate conditions with instrumentation to measure
the required parameters and the collection, analysis,
and evaluation of quantitative data to show that the
measured parameters are equal to or exceed the spec-
ified requirements.

=]
Test Cases 2 =

At The type of return parameter (Direction = return) of a Test Case element must be VerdictKind (an enumer-
ation).

bdd [Model] Data @Enumeraﬂnn types]J

==enumeration=:=
VerdictKind

pass
fail
inconclusive
error

Figure 157 -- VerdictKind Enumeration

Requirement Relationships
~o Derive Relationship (Dependency)

As with other dependencies, the arrow direction points from the derived (client) requirement to
the (supplier) requirement from which it is derived.

" The supplier and the client of a Derive dependency must be requirement elements or
requirement subtype elements.

=
<5 Satisfy Relationship (Dependency)
AN The supplier must be a requirement element or one requirement subtype.

SysML Diagrams

A
<t Copy Relationship (Dependency)

A Copy dependency created between two requirements maintains a master/slave relationship
between the two elements for the purpose of requirements reuse in different contexts. When a
Copy dependency exists between two requirements, the requirement text of the client
requirement is a copy of the requirement text of the requirement at the supplier end of the
dependency.

N The supplier and the client of a Copy dependency must be requirement elements or
requirement subtype elements.

5.5.6 SysML Requirements Table

As requirements are text-based, it is more convenient to enter text using spreadsheet-like tabular format, i.e.
SysML Requirements Table, instead of limited-size boxes in a diagram. This table is consistent with OMG
SysML specifications.

SysML Requirements Table contains requirements. Each row in the table represents a requirement. When cre-
ating such table, it will consist of 9 columns, 4 of them visible, representing the properties of each requirement
in the table. Table 5 below lists the name and description of each column. With this table, you can:

e Create new requirements directly in the table, or import the existing ones from your model to the
table.

e Directly edit the properties of the requirements in the table.

e Directly generate requirement reports, renumber requirements’ IDs, or export the table into
CSV or HTML format.

Table 5 -- SysML Requirements Table Default Columns

Column Name Visible by Description
default

Y Row number.

ID Y Requirement ID.

Name Y Requirement name.

Text Y Requirement text.

Requirement Type N Type of requirement, e.g., business requirement, design constraint,
etc.

Owner N Requirement owner.

Source N (For extendedRequirement and its subtypes only) source of the
requirement.

Risk N (For extendedRequirement and its subtypes only) level of risk of the
requirement. See Table 4 for more information.

Verify Method N (For extendedRequirement and its subtypes only) method to verify

a requirement. See Table 4 for more information.

SysML Diagrams

- |Eistrt [HSUV Requirement Table x |

1 B

i [AddNew [Add Mest=d [Add Existing ﬁ i # Up 4 Dowr

% Unnest Requirement M Nest Requirement Report]DNumbering % Show Columns Export

D |‘ D m Table W Zee:eL Text

1 |RL21 Emissions The vehicle shall meet Ultra-Jow Emissions vehide standards

2 |d4 Power

3 |d.2 Range

4 |d.1 RegenerativeBraking

5 [4.2 FuelCapacdity

6 |41 CargoCapacity

7 | Performance The Hybrid SUV shall have the braking, acceleration, and offroad capability of a typical SUV, but have dramatically
better fuel economy

8 |24 Acceleration The Hybrid SUV shall have the acceleration of a typical SUV.

9 (23 OffRoadCapability The Hybrid SUV shall have the off-road capability of a typical SUV.

10 (2.2 FuelEconomy The Hybrid HSUV shall have dramatically better fuel economy than a typical SUV

1 |21 Braking The Hybrid SUV shall have the braking capability of a typical SUW.

12 SafetyTest

13 Qualification

14 PowerSourceManagement

15 PassengerCapacity

16 Ergonomics

17 Eco-Friendiness

18 Capacity

(i) Creating a SysML Requirements Table

Figure 158 -- SysML Requirements Table

You can create a SysML Requirements Table using the (a) main toolbar, (b) main menu, or (c) Containment

Tree.

(a) To create a SysML Requirements Table using the main toolbar:

1. Click the SysML Requirements Table icon on the main toolbar (Figure 159). The Create Dia-
gram dialog will open (Figure 160).

123

[[e [e B R

Figure 159 -- Main Toolbar

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

E Create Diagram

Create a new SysML Requirements Table

Type diagram name and select package in which a
new diagram will be created.

Type SysML Requirements Table name:

|HSU'I.|' Reguirement Table |

Select owner for diagram:

-3 HSUyModed

E MO Customization For SwsML [MD_customization_For

-3 MadelingDomain

E QDY Library [MD_customization_For_SwsMML.mdzip]

E 1ML Standard Profile [UML_Standard_Profile.xml]

E Matrix Templates Profile [Matrix_Templates_Profile.:

E SysML Profile [SywsML Profile. mdzip]

@l 1ML Profile For Schedulabilky, Performance and Time
b Association[HSVModel :Department OF Matar Yehic
,-""' Association[HSWModel:: Driver - HSUWModel: :HIUW
i Association[HSUYModel: Driver - HSUYModelHILY
,-""' Association[HSWModel:: Driver - HSUWModel: :HIUW
,-""' Association[HSWModel:: Driver - HSUWModel: :HIUW
g Associabior[HSUYMadel: HybridSUy - biHSYMadel:
o Associabion[HIUYMadel: : HybridSUWY - bk HSUYModel
o Associabion[HIUYMadel: HybridSUY - ciHSUYMode!:

Lo A AccaciabionT S Aol HeobeidS) - S LAl
< | i | >

[Create Owner l Clone

Figure 160 -- Create Diagram Dialog

2. Type in the name for the SysML Requirements Table to be created, and select its owner in the
element tree (Figure 160).

3. Click OK.

B r% o rﬂgh ri:.ﬂ-- r":} I M HSUY Requirement Table l
n

Cl:lntainme_nt =] # [0 AddMew [AddMested [Add Existing B Delete From Table W Dele
= @B Y B # | ID I Mame
E-E] Data

B} Relations
- HalYModel
[+ ModelingDomain
2 Skart
JH5LY Requirement Table
Index
—|E3] Index with explanations

Figure 161 -- Blank SysML Requirements Table

124 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

(b) To create a SysML Requirements table using the main menu:

1. Click Diagram > SysML Diagrams > SysML Requirements Table... on the main menu (Fig-
ure 162). The SysML Requirements Table dialog (Figure 163) will open.

Diagrams |

& Class Diagrams... Chrl+1

Hol| Communication Diagrams.. . Chrl+3

rool Protocol Skake Machine Diagrams. .. Chrl+6

A9 Implementation Diagrams, .. Chrl+6

@ Composite Skruckure Diagrams. .. Chrl+9

|$' Interaction Cwervigw Diagrams. .. Chrl40
Cuskom Diagrams bk
SwsML Matrices b

| 3ysML Diagrams 4 | SwsML Activity Diagrams...

Cuskarize, .. SwsML Block Definitian Diagrams. ..
Diagram ‘Wizards » SywsML Internal Block Diagrams. ..

SysML Package Diagrams. ..
SwsML Parametric Diagrams. ..

Load Al Diagrarns SwsML Requirerents Diagrams. ..

SywsML Requirements Table, ..

& [[(6t (22 [[(ol

SwsML Sequence Diagrams., ..

SyshL Skake Machine Diagrams. ..

SwsML Use Case Diagrams. ..

Figure 162 -- Creating SysML Requirements Table Using Main Menu

SysML Diagrams

SysML Requirements Tables

Marne

H3UW Requirement Table

SysML Requirements Tables

Create a new SysML Reguirements Table. Open a
diagram by choosing it from the list of SysML
Requirements Tables available within a project,

Owner

mm H5INModel: HSUY Requireme., .,

[Edit] [Add] [Remove] [Open]

Figure 163 -- SysML Requirements Table Dialog

2. Click the Add button. The Create Diagram dialog (Figure 160) will open.

3. Type in the name for the SysML Requirements Table to be created, and select its owner in the

element tree (Figure 160).
4. Click OK.

(c) To create a SysML Requirements table using the Containment Tree:

1. Right-click the element, which will be the owner of the SysML Requirements table, in the Con-

tainment Tree.

Alll

Mew Element

Mewy Diagrarn

2. Click New Diagram > SysML Diagrams > SysML Requirements Table (Figure 164).
3. Type in the name for the SysML Requirements Table in the Containment Tree, and then press

Mew Reelation

Specification

Use Case Mumbering. ..

Requirement ID Mumbeting...

Enter

Ga To

Related Elements

Taals

SysML Diagrams

FEl B 7] sl

]

B

Class Diagram

Communication Diagram
Protocol State Machine Diagram
Implementation Diagram
Composike Struckure Diagram
Interaction Crverview Diagram
Cusktom Diagrams

SysML Makrices

Stereckype

Rename

Fz

SysML Activity Diagram

SwsML Block Definition Diagram
SysML Internal Block Diagram
SwsML Package Diagram
SysML Parametric Diagram

SysML Requirernents Diagrarm

SysML Requirements Table

] e (|) B T) [Be 1

SysML Sequence Diagram
SywsML State Machine Diagram
SysML Use Case Diagram

Figure 164 -- Creating SysML Requirements Table Using Containment Tree

Enter.

SysML Diagrams

(if) SysML Requirements Table Toolbar

[AddMew [B AddMested [0 Add Existing B Delete From Table § Delete {3 Up £} Down

4i% Unnest Requirement b Mest Requirement Repott ID Mumbering J, Show Calurnns Expatt

Figure 165 -- SysML Requirements Table Toolbar

The SysML Requirements table toolbar (Figure 165) is located on the main toolbar. There are 13 Requirements
table icons on the Requirements table toolbar: (a) Add New, (b) Add Nested, (c) Add Existing, (d) Delete From
Table, (e) Delete, (f) Up, (g) Down, (h) Unnest Requirement, (i) Nest Requirement, (j) Report, (k) ID Numbering,
(m) Export, and (I) Show Columns.

SysML Diagrams

Table 6 -- SysML Requirements Table Toolbar Icons

Icon Name Keyboard Shortcut

Insert

| Add New Ctrl + 1 (on MAC)
Alt + Insert

B Add Nested Alt + | (on MAC)
Ctrl + Insert

G Add Existing Ctrl + E (on MAC)

& Delete From Table Delete

= Delete Ctrl+D

iy Up Ctrl + Open Bracket

iy Down Ctrl + Close Bracket

45 Unnest Requirement n/a

S Nest Requirement n/a

E] Report n/a

ID Numbering n/a

3 Show Columns n/a

Export n/a

(a) Add New

You can either click the Add New icon on the table toolbar or press Insert (Table 6) to add a new requirement
which will then be automatically added to the table.

If you click the icon, the available requirement types will be listed in the drop-down menu (Figure 166). If you
have created your own custom requirement types, they will appear under the Custom Requirements group in

128 Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

the menu, e.g., “myRequirement” in Figure 166. Then, select a requirement type that you want to create from
the drop-down menu. A requirement of the selected type will then be created and added to the table.

NOTE e The owner of the newly-created requirement will be similar to the
owner of the table.

e To select a different owner, hold Shift and then select a requirement
type from the drop-down menu. The Select Owner dialog will then
open, enabling you to choose a different owner.

e If a table row is selected, the requirement in that row will be selected
in the Select Owner dialog automatically.

e If the selected owner is a requirement, then you are creating a new
nested requirement.

If you press the buttons, a requirement will be created promptly. You can then change the type of the newly-cre-

ated requirement directly in the table.

| start [f HSUV Requirement Table x

[Add Mew [i Add Existing 4in

Requirement Mame
Business Requirement
Design Constraint
Extended Requirement
Functional Requirement
Interface Requirement
Performance Reguirement

Physical Requirement

B O = R By R

Usability Fequirement

Custom Requirements ' [E myRequirement

=

Figure 166 -- Requirement Type Drop Down Menu for SysML Requirements Table

(b) Add Nested

When a requirement is highlighted in the table, you can either click the Add Nested icon on the table toolbar or
press Alt + Insert (Table 6) to add a new nested requirement, owned by the highlighted requirement, to the
table.

Like Add New, if you click the icon, the available requirement types will be listed in the drop-down menu. Then,
select a requirement type that you want to create from the drop-down menu. A nested requirement of the
selected type will then be created, being owned by the requirement highlighted in the table.

(c) Add Existing

To add requirement(s) already existed in your model to a SysML Requirements Table:

1. Click the Add Existing icon on the table toolbar or press Ctrl + Insert (Table 6). The Select
Requirement dialog will open (Figure 167).

SysML Diagrams

E Select Requirement

select, search for, or create elements

Search for an element by using list or tree views, To find an element type text or wildcard (*,7) into
"Search by name” input field. Search elements by their qualified names or use camel case when
searching if the appropriate mode is enabled.

Selected elements
A 4.2 FuelZapa

Search by name:

|-'-.e':|E text or wildcard (%,

Bo Tree | E= List

B B B BX 18 matches found
E}D HSIWModel:: HSUY Requirements (75 mafiches) I
El-E3 HoWY Specification (74 maiches) =
o I Add Rect
----- A 4.2 FuelCapacity E
-8 " PassengerCapacity e Remove

[4,1 CargoCapacity

B} CE " " Eco-Friendiness (7 mafoh) : Femove .

- [H " " Ergonomics
B CE " " Qualification (7 maioh)

Figure 167 -- Select Requirement Dialog - Add Existing Requirements to Table

2. Select the requirement element(s) which you want to add to the table.
e Use the Add button in Figure 167 to add a requirement selected in the element tree
to the Selected elements: pane.

e Use the Add Recursively button in Figure 167 to add all requirements listed under
the requirement selected in the element tree and the selected requirement itself to
the Selected elements: pane.

e Use the Remove button in Figure 167 to remove the selected requirement from the
Selected elements: pane.

e Use the Remove All button in Figure 167 to remove all requirements from the
Selected elements: pane.

3. In the Select Requirement dialog (Figure 167), click
e OK to add all requirements in the Selected elements: pane to the table, or

e Cancel to cancel the operation.

(d) Delete From Table

To remove requirement(s) from a SysML Requirements Table:

1. Select the row(s) of the requirement(s) you want to remove.
2. Click the Delete From Table icon on the table toolbar or press Delete (Table 6).
3. The selected requirement(s) will then be removed from the table.

NOTE Requirement(s) removed from the table still exist(s) in your model. To
remove requirements from your project, see Section (e) Delete below.

SysML Diagrams

(e) Delete

To remove requirement(s) from your model:

1. Select the row(s) of requirement(s) you want to remove.
2. Click the Delete icon on the table toolbar or press Ctrl + D (Table 6).
3. The selected requirement(s) will then be removed from the table and from your project.

(f) Up

To move the selected row of requirement up, either click the Up icon on the table toolbar or press Ctrl + Open
Bracket (Table 6).

(g) Down

To move the selected row of requirement down, either click the Down icon on the table toolbar or press Ctrl +
Close Bracket (Table 6).

(h) Unnest Requirement

When a nested requirement is selected in the Requirements Table, you can click the Unnest Requirement to
move the selected requirement to be owned by the owner of the current one. The requirement's id will be
changed accordingly. Unnest Requirement also supports for the multiple selection of the nested requirements
which are owned by the same owner.

(i) Nest Requirement

You can select a requirement in the Requirements Table and then click on the Nest Requirement to move the
selected requirement to be owned by the requirement in the previous row. Nest Requirement also support for
the multiple selection of the requirements.

(j) Report

The SysML Requirements Table allows you to generate a requirement report directly from the table. The default
report template used is Requirement Table (Type A).

To generate a report, click the Report icon on the table toolbar (Table 6). The template drow-down menu will
then open (Figure 168).

Report ID Numbering ,.H., Show Columns Expor
SysML - Requirement Table (Type A)

[E

i

SysML - Requirement Dependencies Report
SysML - Requirement Report
SysML - Requirement Table (Type B)

B) @ B

SysML - Coverage Analysis

Figure 168 -- Template Drow-down Menu

SysML Diagrams

Select the report template you would like to use. The Generate Report dialog will then open (Figure 169).
Choose the report output filename and then click Generate to instantly generate the report.

NOTE e All requirements in the table will be used as the scope of the generated report.

e To change the scope of the report, activate Report Wizard by clicking the Wizard
button in the Generate Report dialog (Figure 169). Click the Next button in the
Report Wizard twice to proceed to the Select Element Scope pane. You can then
change the report scope using this pane.

e The Built-in report data (in the Select Report Data pane of Report Wizard) must be
selected, in order to generate a report from this table.

See Section 12. Report Wizard and Template for more information on report generation.

Generate Report : SyshML - Requirement Table (Type A)

Output options [J |
This page allows you to configure report files, e.q. to select the report files output location =
and image format, etc, Click Generate button to start generating the report. e

Output Options
Report file:

Report image format:

Joint Photographic Experts Group (*.jpg) [v]

Auto image size:

Fitimage to paper (large only) [v]
Display empty value as Fublish to server

() Empty text Select server ;

(%) Custom text: (none) [v] No Upload (v] E

Display in viewer after generating report

| Generate | Help][Cancel

Figure 169 -- Generate Report Dialog - SysML Requirements Table

(k) ID Numbering

You can activate the Numbering Requirement IDs feature from a SysML Requirements Table by clicking the
ID Numbering icon on the table toolbar (Table 6).

To edit the ID of a requirement, select the requirement in the table and click the ID Numbering icon on the table
toolbar.

(I) Show Columns

To show/hide columns in the table, click the Show Columns icon on the table toolbar (Table 6). The Table Col-
umn drop down menu will then display (Figure 170).

SysML Diagrams

i Show Columns

[| 1D
|+ | Mame
| v | Teut

Requirernent Type
Owner

Source

Risk

Verify Method

Customize Column...

Figure 170 -- Table Column Drop Down Menu for SysML Requirements Table

Check a column name to display that column on the table (or uncheck a column name to hide that column). To
customize displayed columns, select Customize Column... in Figure 170. The Select Custom Requirement

Columns dialog will then display (Figure 171).

133

m Select Custom Reguirement Columns

select, search for, or create elements

Search for an element by using list or tree views. To find an element type text or wildcard
(*,7) into the "Search by name” input field, Search elements by their qualified names or use
camel case when searching if the appropriate mode is enabled.

- —

=

] leé:j

Search by name:

|Tl'*r'|:|e text or wildcard (%, ?) to search

fa Tree E= List

28 matches found

Master : Requirerment [SywsML Profile: :Requirements: :Requirement]

RealizingElements : Elerent [0..*] [MD Customizakion For SyskL:customizakions For traceabiliy:: Properti
RealizingRequirerents : Class [0..%] [MD Customization For SyskL:cuskomizations For fraceability: :Prope
RefinedBy : MamedElement [*¥] [SwsiL Profile:: Requirements: (Requirement]

RefinedByRequirerents : Class [0,.%] [MD Cuskomization for SysiL::customizations for traceabilicy: :Prop
RefineRequirements ; Class [0.,%] [MD Customization For SysML: i customizations For traceabiliby: Properti
ReqDetive : Class [0..*] [MD Customization For SysML:cuskomizations For kraceabiliby: i Properties descrip
ReqDetivedFrom : Class [0,.%] [MD Customization For SysMLscustomizations For traceabilicy: :Properties o
ReqRefineBy ; Class [0,.*] [MD Customization For SwsML: customizations For traceability :: Properties desc
ReqRefines ; Class [0..*] [MD Customization For SwsML:customizations For braceability: :Properties descri)
ReqTracedFrom ; Class [0..*] [MD Custornization For SwsML: icustomizations For traceability::Properties de
ReqTracedTa : Class [0..*] [MD Customization For SysML::cuskomizations For traceability: :Properties desc
SatisfiedBy : MamedElement [*] [SysML Profile: :Requirements: :Requirement

I 1111 I [L]

A0 DD Q000000000

(]

| b Multiple Selection

Figure 171 -- Select Custom Requirement Columns Dialog

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

Select a property / tag to be displayed as a new column of the Requirement Table, and then press OK. The new
column will then display on the table. To be able to select multiple properties / tags to be displayed, use the
Multiple Selection button (Figure 171).

(m) Export

You can also export a SysML Requirements Table to an HTML or CSYV file by clicking the Export icon on the
table toolbar (Table 6). All requirements in the table will be exported to a file of the selected file format.

5.6 SysML Activity Diagrams

Activity diagrams describe control, input, and output flows among actions. They represent the system business
and operational work flows. They capture actions and display their results. They are typically used for business
process modeling and used in situations where all or most of the events represent the completion of internally-
generated actions.

Though Activity diagrams are often classified alongside interaction diagrams, they actually focus on the flows
driven by internal processes (as opposed to external events).

SysML extends control in Activity diagrams and provides extensions that might be very loosely grouped under

the term "continuous," but are generally applicable to any distributed flow of information and physical items
through a system. It also introduces probability concepts to activities.

5.6.1 SysML Activity Diagram Metamodel and Elements

For more information on notation elements, see the Activity Diagram in the ‘UML Diagrams’ section of the
MagicDraw User Manual.

bdd [Model] Drata | @Cnntml Operator]J bdd [Model] Data [@ MoBuffer-Crwerrite]J
==metaclass== ==metaclass== dﬁmn_ataclass*:b
Relravior Operation Objectiode
==steredype=> ==stereatypes== ==stereatypes=
ControlOperator HoBuffer Overwrite
[Behavior, Operation] [OhiectMode] [DhjectMode]

Figure 172 -- Control Operator Metamodel Figure 173 -- No Buffer and Overwrite Metamodel

SysML Diagrams

bdd [Model] Data | @rate-nptiunal-pmbability]J

=2metaclazs== =zmetaclasss== =2metaclazs==
Parameter ActivityEdga ParameterSet

=zmetaclass==

ObjactMode
==sterectypes== ==sterectypes== ==stereatypes==
Optional Rate Probability
[Parameter] [ActivityEdge, ObjectMode, Parameter] [ActivityEdge, Parameter=et]
7T
==stereatype== ==sterectype==
Discrete Continuous

[ActivityEdge, OhjectMode, Parameter] [ActivityEdge, ObjectMode, Parameter]

Figure 174 -- Rate, Optional, Probability, Discrete and Continuous Metamodel

Icon Description
Object Node [UML]:

1 |An Object Node is an abstract activity node that is part of defining object flow in an
activity. Object nodes can be used in a variety of ways, depending on where objects are
flowing from and to.

5.6.2 SysML Activity Diagram Toolbar

Button
Element (hot key)
Action [UML]:

An action is a named element that is the fundamental unit of an executable

functionality. The execution of an action represents some transformations or -
processing in the modeled system. When the action is to be executed or what

its actual inputs are is determined by the concrete action and the behaviors in | (B)

which it is used.

Call Operation Action [UML]:
A Call Operation Action is an action that transmits an operation call request to

the target object, where it may cause the invocation of the associated behav-
ior. The argument values of the action are available to the execution of the
invoked behavior. (0)

Opaque Action [UML]:

An Opaque Action is an action that introduces discipline to implement specific
actions or to be used as a temporary placeholder before some other actions
are chosen.

SysML Diagrams

Element
Any Action [UML]:

This element is introduced in order to maintain any other desirable action ele-
ment with an appropriate metaclass stereotype applied.

Object Node:
See Section 5.6.1 for description.

Data Store [UML]:

A Data Store node is a central buffer node for a non-transient information. A
data store keeps all tokens that enter it, copies them when they are chosen to
move downstream. Incoming tokens containing a particular object replace any
tokens in the object node containing that object.

Activity Parameter Node [UML]:

An Activity Parameter Node is an object node for inputs and outputs to the
activities. The Activity parameters are object nodes at the beginning and end
of the flows, to accept inputs to an activity and provide outputs from it.

Input Expansion Node [UML]:

An Input Expansion Node is an object node used for indicating a flow across
the boundary of an expansion region. A flow into a region contains a collection
that is broken into its individual elements inside the region, which is executed
once per element.

Output Expansion Node [UML]:

An Output Expansion Node is an object node used for indicating a flow out of a
region that combines individual elements into a collection for use outside the
region.

Object Flow [UML]:

An Object Flow is an activity edge that can have objects or data passing along
it. An object flow models the flow of values to or from the object nodes.

Control Flow [UML]:

A Control Flow is an edge that starts an activity node after the previous one is
finished. Objects and data cannot pass along the control flow edge.

Send Signal Action [UML]:

A Send Signal Action is an action that creates a signal instance from its inputs,
and transmits it to the target object, where it may trigger the state machine
transition or the execution of an activity.

Accept Event Action [UML]:

An Accept Event Action is an action that waits for the occurrence of an event
that meets the conditions specified. Accept event actions handle event occur-
rences detected by the object owning the behavior.

Time Event [UML]:

A Time Event specifies a point of time with an expression, which may be abso-
lute or might be relative to some other points of time.

Button
(hot key)

»

-
(SHIFT+B)

WA
.HE'N

(SHIFT+D)

2
(SHIFT+F)

%
(F)

C
(SHIFT+S)

z]
(E)

)

SysML Diagrams

Element
Initial Node [UML]:

An Initial Node is a starting point for executing an activity. It has no incoming
edges.

Activity Final [UML]:
An Activity Final is a node that stops all flows in an activity.

Flow Final [UML]:

A Flow Final refers to the final node that terminates a flow and destroys all
tokens that arrive at it. It has no impact on other flows in the activity.

Decision [UML]:

A Decision is a control node that chooses between outgoing flows. A decision
node has one incoming edge and multiple outgoing activity edges.

Merge [UML]:

A Merge is a control node that brings together multiple alternate flows. It is not
used to synchronize concurrent flows, but to accept one among several alter-
nate flows.

Fork/Join Horizontal [UML]:
To help control parallel actions.

Fork/Join Vertical [UML]:
To help control parallel actions.

Exception Handler [UML]:

An Exception Handler is an element that specifies a body to execute in case
the specified exception occurs during the execution of the protected node.

Structured Activity Node [UML]:

A Structured Activity Node is an executable activity node that may have an
expansion into the subordinate nodes. The structured activity node represents
a structured portion of the activity that is not shared with any other structured
node, except for nesting.

Expansion Region [UML]:

An Expansion Region is a structured activity region that executes multiple
times corresponding to the elements of an input collection.

Conditional Node [UML]:

A Conditional Node is a structured activity node that represents an exclusive
choice among alternatives.

Loop Node [UML]:

A Loop Node is a structured activity node that represents a loop with the
setup, test, and body sections.

Button
(hot key)

L
(M)

@
(D)

@
(L)

R
(G)

<
(G)

(K)

1]

(SHIFT+K)

Z
(P)

o

SysML Diagrams

Button
Element (hot key)
Sequence Node [UML]:
A Sequence Node is a structured activity node that executes its actions in =]
order.
Input Pin [UML]:
An Input Pin is a pin that holds input values to be consumed by an action. E[
Input pins are object nodes that receive values from other actions through
object flows. (SHIFT+I)
Output Pin [UML]:
An Output Pin is a pin that holds output values produced by an action. Output :El
pins are object nodes that deliver values to other actions through object flows.

(SHIFT+0O)

Value Pin [UML]:

A Value Pin is an input pin that provides a value to an action that does not
come from an incoming object flow edge.

Swimlanes [UML]:

Swimlanes are used to organize actions and sub-activities according to the A
class allocated to each swimlane header and partition an activity diagram. (SHIFT+ V)
=
(SHIFT + W)

5.6.3 SysML Activity Diagram Specific Features

SysML Activity Diagram specific features include:
(i) Name Display Mode (Action shortcut menu)
(ii) Behavior (Action shortcut menu)
(iii) Select Operation (Call Operation Action shortcut menu)
(iv) Dynamic Centerlines
(v) Streaming Parameter

(i) Name Display Mode (Action shortcut menu)

Select Name Display Mode on the action shortcut menu (Figure 175) to show (a) the name of the action, (b)
the behavior name of the action, or (c) both (Figure 176).

SysML Diagrams

Action nam|la+| Behawior Action name :

| J— |
Action name :
Behawior L
.' & J Specification Enter
Symbol{s) Properties. .. Alt+Enter
Mew Diagram [
Go To 4
Refactar »
Select in Containment Tree Al+E
Related Elements »
Stereokype]
Edit Campartment »
.Shu:uw Stereotypes 3
Show Tagged Yalues
Shiow Craner »
Wrap Words
| Name Display Mads . | Show Action Mame
Behavior » Show Behavior Mame
= Shiow Both

Figure 175 -- Action Shortcut Menu for Name Display Mode

|'|1 Behawior

th

Show Action name Show Behavior name Show both

Figure 176 -- Name Display Modes

NOTE

You can also change the Name Display Mode of an action in the action Symbol Proper-
ties dialog.

(ii) Behavior (Action shortcut menu)

Select Behavior from the action shortcut menu to choose the Behavior of the action (Figure 177).

SysML Diagrams

Action name =

Specification Enter
= Symbol{s) Properties. .. Alt+Enter

Mewwy Diagram]
Go To r
Select in Containment Tree Al+E
Related Elements »
Stereotype »
Edit Compartment 3
Show Stereotypes 3
Show Tagged Yalues
Show Owaner b

Wrap Words
Mame Display Mode 3

| Behaviar 3 | I

hdl <UMSPECIFIED >

&4 Activity Diagram
&, Behavior [Activity Diagram)

=
Mew

Figure 177 -- Action Shortcut Menu for Behavior Selection

‘ NOTE You can also change the behavior of an action in the action Specification dialog.

(iii) Select Operation (Call Operation Action shortcut menu)

Click Select Operation on the Call Operation Action shortcut menu (Figure 178) to select an operation for that
Call Operation Action (Figure 179).

SysML Diagrams

CallOperation | [select Operation §|
(BLOCK:: operationl L —
P Model
Specification Enter
G — o <none > b
Symbol(s) Properties... Ale+Enter El-Ex) Data
B2 Relations
Go To ' -7 data
Select in Containment Tree Alt+E E-Eg MO Customization For SyshL [MD_customization_for_S
BB UML Standard Profile [UML_Standard_Profile. xm(]
Related Elements 4 B-Eg SysML Profile [SysML Profile. mdzip]
Stereatype » i Assembly
i E-E BLOCK
Edit Compartrment 3 -2 Relations
-E8 Domain
Show Sterectypes ¥ 3 External
B4 subsystem
Show Tagged Values 3 System
Shows Qualified Name For Operation ‘& System Context
L b 8 Actor
Showt Cruner 4 ; cperation1() =
Wrap words P 5
| Select Operation |
-

[[0]4] [Cancel] [Help]

Figure 178 -- Call Operation Action Shortcut for Select
Operation

Figure 179 -- Select Operation Dialog

(iv) Dynamic Centerlines

This feature will display a horizontal or vertical centerline to make it easier for you to align a newly-created
shape (or an existing one that is being shifted around) with one or two existing shapes in a SysML Activity Dia-
gram (Figure 180).

This centerline, however, will only be displayed in situations where the center of the newly-created or shifted
shape coincides with the horizontal or vertical axis of the shape(s) with which it is being aligned, regardless of
how close to or remote from that shape it is.

("act [Activity] Activity Diagram[[Activity Diagram]J
|

H Behgyior + <=startOhjectBehavior==
| TS
|
I R
CallOperation
|(BLOCK::|ﬂleraﬂnn1) %1 OpaqueAction |
| ——
|
|
|

&

Figure 180 -- Dynamic Vertical Centerline

Dynamic Centerlines is enabled by default, So, if you do not want to have an horizontal or vertical centerline
displayed in your diagram, you need to disable it.

SysML Diagrams

To disable Dynamic Centerlines:

e Click the Show Centerlines button (Figure 181) on the activity diagram toolbar; or

e Press C; or

e Select Options > Environment

on the main menu. The Environment Options dialog will then

open. Clear the Show centerlines in flow diagrams option under the Diagram > Display
group of the Environment Options dialog.

/5] ACT1-B x |

! Dependency
E=] Image Shape

---- Separakar

"T] SysML Activity Diag. ..

Ll

[R]E[E]] e idn - & 4b 4 8s B 102
[©Common . howe Centerlines [C jl E E = '
ok r
Sl " | (‘act [Activiy] ACT1-E] 5| ACT1-B]J
abe Text Box b
B anchor *

Figure 181 -- Show Centerlines Button

(v) Streaming Parameter

Right click on the Activity Parameter Node or Pin

which has a parameter (Figure 182 and Figure 183). Check or

uncheck the Stream menu for setting the value of isStream of the corresponding parameter to true or false

respectively.

SysML Diagrams

Farameter= @value

|]
wvalueType: =
value : Real Specification Enter
i (il Symbol(s) Properties, ., Ale+Enker
Go To ¥
Refactor »
Select in Containment Tree Ale+E

Seleck in Skructure Tree

Stereatype]
Aukosize

Edit Compartment »
Show Stereokypes »

« | Show Constraints
Show Tagged values
Show Cwner »
Wrap Waords

« | Show Classifier

w | Show Skate

Type ¥

Seleck Activity Parameter
Cankinuous

Discrete

MoBuffer

Crverwrite

« | Stream

Figure 182 -- Context menu of Activity Parameter Node

SysML Diagrams

5.6.4 Using Activity Diagram Elements

Farameter = @ argument

Action

Figure 183 -- Context menu on Pin

Activity Decomposition Hierarchy Wizard

You can decompose activities using the Activity Decomposition Hierarchy Wizard, which makes it possible to
convert activities into Class Diagrams or into SysML BDDs, and represent, analyze, or document activity hierar-

chies in a diagram structure.

To decompose activities using the Activity Decomposition Hierarchy Wizard:

Specification

Symbaol{s) Properties. ..

o To

Refackar

Select in Containment Tree

Select in Struckure Tree

Stereotype

Edit Compartment
Reset Labels Positions
Show Mame

Show Stereobypes
Show Constraints
Show Tagged Yalues
Show Type

Type

Caonvert bo Object
Continuaus

Discrete

MoBuffer

Creerwribe

Skream

Enter

Alt+Enter

Alt+B

1. Select either:

shortcut menu (Figure 184),

the main menu, or

dialog.

e Activity Decomposition Hierarchy Wizard on the SysML Activity Diagram

e Diagrams > Diagram Wizards > Activity Decomposition Hierarchy Wizard on

e Analyze > Model Visualizer on the main menu. The Model Visualizer dialog will
then be displayed. Select the Activity Decomposition Hierarchy Wizard from the

SysML Diagrams

145

(act [Activity] Activity Diagram|[[F5| Activity Diagram U

" Action name : —
H Behavior Specification
\ I‘|1 y Diagram Properties, ., Shift+Enker

Shove Diagram Frame

CallOperation

|_ [BLOCK: operationt |

Shova Diagram Info

®

Show Owner

Go To

Select in Containment Tree Alt+B

Find in Diagram trl+Shift+

Activity Decomposition Hierarchy Wizard

Grid

Figure 184 -- Activity Decomposition Hierarchy Wizard Shortcut Menu

2. Follow the three steps in the Activity Decomposition Hierarchy Wizard dialog (Figure 185).

3. Step 1 Specify name and package. Enter the name, type (SysML BDD or Class Diagram),
and select or create the owner of the diagram to be created (Figure 185).

X Activity Decomposition Hierarchy Wizard

() 1. Specify name and package

() 2. Select structure

Type diagram name and choose or create
the package that will contain the created
diagram.

Type diagram name:

|Decomposition of Ackivity $activicyMames |

Select diagram type:

Class Diagram w

B EQ matrix templates [matrix_templates_module.mdzip]

E MO Customization For SysML [MD_customization_for_SysML.mdzip]

E-E7 ModelingDomain

Eg ML Standard Profile [UML_Standard_Profile, xmi]

sample profile

BB SysML Profile [SysML Profile, mdzip]

BB editor

BB SysMLL.O —
BB test

l Cancel ” Help]

Figure 185 -- Activity Decomposition Hierarchy Wizard Dialog: Specify Name and Package

4. Step 2 Select structure.

Select the activities to be decomposed:

e Mark the activity(ies) to be decomposed (Figure 186).

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

e Select Add all structures into one diagram to add all the activities into the
diagram you want to create. If you do not select this option, one diagram will be
created for each activity selected (Figure 186).

e Then, click Next if you want to customize the symbol properties of the diagram(s) to
be created (step 3 below). Otherwise, click Finish (Figure 186).

NOTE e The Children Count column (Figure 186, upper right-hand side) shows the number
of behaviors included (plus the number of object nodes owned if the Add contained
Object Nodes option is selected).

e The Add contained Object Nodes option is selected by default. This option will
display the types of the object nodes and connect them to the composition with
activities containing object nodes.

e The number of behaviors included also depends on the Search recursively option
(selected by default). If not selected, the search will be conducted at only one level of
the activity(ies) selected. If selected, the search will be conducted for each activity
selected and for those activities invoked by call behavior actions in the selected
activity, recursively.

= Activity Decomposition Hierarchy Wizard

&dd all struckures inko one diagrarm
() 1. Specify name and package

Activities Children Count

) Accelerate [HSUY Madel: :Behavior] 17 ~
® ProvidePower [HSUY Model: :Behavior]
&) Figure 11,10 - Continuous system example 1; Opera. .. |7
o) DecomposeMe [fest:: decomposition] 3
) ControlElectricPoveer [HSLY Madel: :Behavior] z
) MeasuretehicleConditions [HSY Model::Behavior] z
) ProvideElectricPower [HSUW Model: :Behavior] z
) ProvideGasPower [HSLY Model: :Behavior] z
&) Enable on Brake Pressure = 0 [HSUY Model::Behavwi... |1
&) ProportionPower [HSUW Model: :Behavior] 1
0

0

0

0

0

0

(%) 2. Select structure

[<]

() 3. Specify symbols properties

Select Activities those struckures will be
decomposed,

) Measuretehicleelacity [HIUY Model: Behavior]

o) Driving [HSUY Model: :Eehavior: :Operate Car]

&) Monitar Traction [HSUY Maodel::Behavior::Operate ...
) Behaviarl [fest::decomposition]

w7 Behaviorz [fest::decomposition]

) Turn Key To On [HSUY Model: Behavior: : Operate Car]

Y {

Search recursively
Add contained Object Modes

[< Back][Mext = [Zancel][Help

Figure 186 -- Activity Decomposition Hierarchy Wizard Dialog: Select Structure

5. Step 3 Specify symbols properties. Customize the symbol properties of the diagram(s) to be
created (Figure 187).

NOTE If you clicked Finish in Step 2, Step 3 will be skipped.

SysML Diagrams

X Activity Decomposition Hierarchy Wizard

b T TR e e Specify symbol properties for diagram elements:

() 2. Select structure - & = Bz
E Class F
() 3. specify symbols properties Fill Colar RGE [255, 255...
UseFill Calor [False
g:?:r;g:tsmperhes for symbals of model Pen Color W RGE [0, 0, 0]
' Texk Color W RGE [0, 0, 0]
Font Arial 11
Line Width 1
Rounded Corn... [| false
Conskraink Te... Expression
Stereotype Color Il RGE [0, 0, O]
Skereobype Font Arial 11 A
(Name)
(Descripkion)

[Firish H Cancel H Help l

Figure 187 -- Activity Decomposition Hierarchy Wizard Dialog: Specify Symbols Properties

6. The Class Diagram will then be generated (Figure 188).

class H3LM sarmple [Dec omposition of Acti ity A ccelerate, ProvidePow er, Monitar Traction, Driving, ProvideGas

==gctivity ==
Accelerate

T

-t o iclePowy er
==activity==
ProvidePower

Rl

-af -alt -afl -afl
==gctivity== ==ai i iy == ==gcthity== ==t th ity ==
ControlElectricPower ProvideGasPower ProportionPower ProvideBHectricPower

==getiviy == ==gctivity == ==ac iy ity == ==gcthity ==
Monitor Traction Turn Key To On Driving Behavior 2

Figure 188 -- Class Diagram of the Decomposed Activities

SysML Diagrams

Swimlane Allocations 11 [

An Activity Diagram or a SysML Activity Diagram can be organized using "swimlanes", each swimlane being
separated from the neighboring ones by vertical or horizontal solid lines on both sides. Swimlanes provide a
view of the behaviors invoked in the activities. Each swimlane must have a swimlane header assigned to a
property. Drag the property over the swimlane header to have the property assigned to the swimlane.

The Allocation relationship can provide an effective means for navigating the model by establishing cross rela-
tionships and ensuring the various parts of the model are properly integrated.

The <allocate> stereotype can be applied to the swimlane header in order to allocate activity actions in the
swimlane to the property in the header.

To stereotype a swimlane <allocate>:

1. Open the Swimlane Header shortcut menu and select Allocated Activity Partition (Fig-
ure 189). The swimlane will then be automatically stereotyped (the stereotype 'allocate’ will
appear as the swimlane header) (Figure 190).

— f |

Specification Enter
Insert Swimlane]
B Insert Inmer Swimlane Chrl+AlE+T

B Delete Swirnlane

Go To ¥
Refackar b
Select in Containrment Tree AlE+B

Related Elerments b
Sterectype]
Edit Compartment]

Show Tagged Yalues
Mame Display Mode 3

Shiow Full Represented Element Signakture

Allocated Activity Partition
T

Figure 189 -- Swimlane Header Shortcut Menu: Allocated Activity Partition

==gllocates==

Figure 190 -- Allocate Stereotype Applied on Swimlane Header

2. Drag a property, for example, partProperty : BLOCK, to the stereotyped swimlane header
(Figure 191).

SysML Diagrams

“act [Activity] Allacatedfotivity | 5] AllocatedActivity]J

==gllocate==
partProperty : BLOCK

._H Action

Start

Figure 191 -- partProperty Allocated to the Stereotyped Swimlane
If you create an action, for example, Action, in the stereotyped swimlane, the action will be allocated to the
property. This means that:

e The value of the allocatedTo tag, under the Allocated stereotype, of the Action is
partProperty (Figure 192).

e The value of the allocatedFrom tag, under the Allocated stereotype, of the partProperty is
Action (Figure 193).

Applied Stereotype = «»
Allocated

allocatedTo = CA
pantFroperty

Action -

Figure 192 -- An Action allocated to a partProperty

==hlock== Applied Stereotype =
Block CEPartProperty
«xAllocated

pats |
pattProperty | BLOCK{allocatedFrom = Actionfe—- —

allocatedFrom= O
Action

Figure 193 -- A partProperty Allocated from an Action

5.7 SysML Use Case Diagrams

The purpose of a Use Case Diagram is to give a graphical overview of the functionalities provided by a system
in terms of actors, their goals (represented as use cases), and any dependencies among those use cases.

A Use Case Diagram describes the usage of a system. The associations between actors and use cases repre-
sent the communications that occur between the actors and the subjects to accomplish the functionalities asso-
ciated with the use cases. The subject of a use case can be represented through a system boundary. The use
cases enclosed in the system boundary represent the functionalities performed by behaviors (activity diagrams,
sequence diagrams, and state machine diagrams).

SysML Diagrams

Actors may interact either directly or indirectly with the system. They are often specialized so as to represent a
taxonomy of user types or external systems. The only relationship allowed between actors in a use case dia-
gram is generalization. This is useful in defining overlapping roles between actors. Actors are connected to use
cases through communication paths, each represented by a relationship. There are four use case relationships:
(i) communication, (ii) include, (iii) extend, and (iv) generalization.

(i) Communication
A communication path represents an association between two Deployment Targets. It connects

actors to use cases.

(ii) Include
An include relationship provides a mechanism for factoring out a common functionality that is
shared among multiple use cases and is always performed as part of the base use case.

(iii) Extend
An extend relationship provides an optional functionality, which extends the base use case at
defined extension points under specified conditions.

(iv) Generalization
A generalization relationship provides a mechanism to specify variants of the base use case.

Use cases are often organized into packages with the corresponding dependencies among the use cases
included in the packages.

5.7.1 SysML Use Case Diagram Metamodel and Elements

For more information on notation elements, see the Use Case Diagram in the ‘UML Diagrams’ section of the
MagicDraw User Manual.

uc [Model] Data [@Use Case]J
z=metaclazs==
Actor
= ==stereatypes== = ==stereatypes==
External system Environmental effect
[Actor] [Actor]

==sterectype== ==sterectype== ==gtereatype== ==sterectype==

Sensor Boundary system User system Actuator

[&ctor] [Actor] [Actor] [Actor]

Figure 194 -- MagicDraw SysML Actor subtypes metamodel

SysML Diagrams

Icon

Description
Actor [UML]:

Actors represent roles played by human users, external hardware, and other subjects.
An actor does not necessarily represent a specific physical entity but merely a particu-
lar facet (i.e. the "role") of some entities that are relevant to the specifications of its
associated use cases.

External System:

An External System is a system that interacts with the system under development. For
example, Information server or Monitoring system [1].

Sensor:

A Sensor is a special external system that forwards information from the environment
to the system under development. For example, Temperature sensor [1].

Boundary System:

A Boundary System is a special external system that serves as medium between
another system and the system under development without having its own interests in
the communication. For example, Bus system or Communication system [1].

User System:

An User System is a special external system that serves as medium between a user
and the system without having its own interests in the communication. For example,
Input Device or Display [1].

Actuator:

An Actuator is a special external system that influences the environment of the system
under development. For example, Heater assembly or Central locking system of a
car [1].

Environmental Effect:

An Environmental Effect is an influence on the system from the environment without
communicating with it directly. For example, Temperature or Humidity [1].

SysML Diagrams

5.7.2 SysML Use Case Diagram Toolbar

Element
Actor:

See Section 5.7.1 for description.

Actuator:
See Section 5.7.1 for description.

Boundary System:
See Section 5.7.1 for description.

Environmental Effect:
See Section 5.7.1 for description.

External System:

See Section 5.7.1 for description.

Sensor:

See Section 5.7.1 for description.

User System:
See Section 5.7.1 for description.

Use Case [UML]:

A Use Case is a kind of behavior-related classifier that represents a declara-
tion of an offered behavior. Each use case specifies a particular behavior, pos-
sibly including the variants that the subject can perform in collaboration with
one or more actors. The subject of a use case could be a physical system or
any other element that may initiate a behavior, such as a component, a sub-
system, or a class.

Package [UML]:

A Package is a namespace for its members, and it can contain other pack-
ages. Only packageable elements can be owned by members of a package.
By virtue of being a namespace, a package can import either individual mem-
bers of other packages or all the members of other packages.

System Boundary [UML]:

A System Boundary is another kind of representation of a package. A system
boundary element consists of use cases related by Exclude or Include (uses)
relationships, which are visually located inside the system boundary rectangle.
Subsystem [UML]:

A Subsystem is treated as an abstract single unit. It groups model elements by
representing the behavioral unit in a physical system.

Include [UML]:

An Include (uses) relationship from use case A to use case B indicates that an
instance of the use case A will also contain the behavior as specified by B.

Button

(hot key)

(A)

C)

(P)

(B)

(©)

2

&

£3l

H

|

Bl

0

SysML Diagrams

Button
Element (hot key)

Extend [UML]:

An Extend is a relationship from an extending use case to an extended use A
case, specifying how and when the behavior defined in the extending use

case can be inserted into the behavior defined in the extended use case. The (E)
extension takes place at one or more specific extension points defined in the

extended use case.

Choose a different Extend direction from the toolbar to draw a line with an

opposite arrow end.

Association [UML]

An Association represents a semantic relationship between two classifiers. It

is used for referencing two Blocks with one another, thus creating two Refer- /
ence Properties at both ends. The aggregation values of both ends of an (S)
Association are 'none'.

Generalization [UML]

A Generalization is a taxonomic relationship between a more general classifier

and a more specific one. Each Instance of the specific classifier is also an 7
indirect Instance of the general classifier. Thus, the specific classifier indirectly G)

has the features of the general classifier.

[1] Stereotypes taken from the SYSMOD process: http: //www.sysmod.de by Tim Weilkiens, oose Innova-
tive Informatic GmbH.

5.7.3 SysML Use Case Diagram Specific Features

The SysML Use Case diagram specific features include:

(i) Use Case Numbering
(i) Use Case Dependency Matrix Template

(i) Use Case Numbering

To number the use cases in a Use Case diagram:

1. Select Use Case Numbering... on the diagram shortcut menu (Figure 195). A Question dialog
will open, indicating that this feature requires UseCase Description Profile, and ask if you
would like to use it.

NOTE You can also select Use Case Numbering... on:
e Use Case shortcut menu
e Package shortcut menu

SysML Diagrams

154

Specification

Diagram Properties. .. Shift+Enter

| Ilse Case Mumbering. ..

=)

: Shows Diagram Frame

Shiow Diagram Infao

Shioww Cwner

Go To b
Select in Containment Tree Alk+E

Find in Diagram Ckrl+Shift+D
arid]

| Prink Active Diagram

Show Diagrams in Full Screen Fi1

Figure 195 -- Use Case Diagram Shortcut Menu: Numbering

2. Click Yes. The Change Use Cases Numbering dialog will open (Figure 196).

X

X Change Use Cases Numbering

Bl T&1 HSLY sample #| Use Cases | Use Cases Owners
£ HSUY Madel

7] Analysis Nurber Mame
1 Behavior « (Operate theVehicle
1 Configuration < Insure thevehicle
1 Requirements < Reqister thev'ehicle

H-F] Skruckure <Z» Maintain the Yehicle
] Test

B UseCases

BEfHybrid S0

[matrix kemplates [matrix_templates_module.m
- MD Customization For SyshL [MD_cuskarnizationl
£ MadelingDarmain

-3 UML Skandard Prafile [UML_Skandard_Profile. x
[} = sample profile

E-Es SysML Profile [SystL Profile, mdzip]

LB | leai= aea Pacevinkinn Drefila [e aea Drafila o0 [Edit] [e]

Renumber

Figure 196 -- Change Use Cases Numbering Dialog

3. Click Create to automatically number the selected use case. Each use case number will be
increased by increments of one. For example, if the Operate theVehicle use case is numbered
"1' (Figure 196), select the Insure theVehicle use case, and then click the Create button to
number the use case to ‘2’ (Figure 197).

Copyright © 2006-2011 No Magic, Inc.

SysML Diagrams

X]

X Change Use Cases Numbering

E-E=] HIW sample
E}-F7 HSUY Madel

B Analysis Murnber Marne

[Behavior 1 «» Ciperate thevtehicle

E-E7 Configuration 2 & Insure thevehicle

- Requirements «» Register thevtehicle

E

E

|| Use Cases | Use Cases Owners

H-F Skructure < Maintain the vehicle
H-[] Test

B[UseCases
(W] Hybrid SV
B Views

B matrix templates [matrix_templates_module.mi
BB MD Customization For SyshL [MD_cuskomization =
B3 ModelingDomain

B3 UML Standard Profile [UML_Standard_Profile, x

E

E

E

-5 sample profile
H-E=] SystL Profile [SysML Profile.mdzip] =
.0 | lear aca Macevinkinn Orafila T leai aca Oeafila ’ Edit l [Remove] ’ Increase l [Decrease] | Renumber |

Figure 197 -- Example of Use Case Numbers

4. Click Remove, Increase, or Decrease to subsequently remove, increase-by-one, or decrease-
by-one a use case number previously ascribed.

5. Click Edit to arbitrarily create a new number or change an existing number to another number.
Once selected, the Type Number dialog will open (Figure 198).

Figure 198 -- Type Number Dialog for Editing Use Case Number

(ii) Use Case Dependency Matrix Template

MagicDraw provides a use case dependency matrix template. This template shows Use Case implementations
with behavioral diagrams (state, activity, sequence and communication). Behavior diagrams are grouped by
Behaviors: State Machine, Activity, and Interaction.

For more information on this feature, see the Dependency matrix in the ‘Model Analysis’ section of the
MagicDraw User Manual, and the ‘Dependency Matrix’ section in this manual.

5.7.4 Using SysML Use Case Diagram Elements

Inserting New Extension Points

Use Insert New Extension Point to insert new extension points in a SysML Use Case diagram.

To insert a new extension, select any of the following:

e Select Insert New Extension Point on the Use Case smart manipulator (Figure 199);
e Select Insert New Extension Point on the Use Case shortcut menu (Figure 200); or
e Press Ctrl + Alt + E.

155 Copyright © 2006-2011 No Magic, Inc.

Validation

- o ra

(M__ uUSE case N v
= _“——————’_’IE) B
E

&

A

AT

b
b
L IEN

| Inzernt New Extension Point

Figure 199 -- Use Case Smart Manipulator

n =S S]

.%_____USE t:ase_ Specification Enter
Symbal(s) Properties, ., Alt+Enter
Mewy Diagram b
Go To bk
Refactar]
Select in Containment Tree AlL+B
Related Elerments]
Stereokype b

IJse Case Numbering. ..

Aukosize
Edit Compartment b
Show Stereaktypes b

Show Constraints

Show Tagged Yalues

[<][<]

Shiow Cwner b

Wrap Wards

Suppress Extension Poinks

Insert Mew Extension Poink Chrl+Al+E

Figure 200 -- Use Case Shortcut Menu

MagicDraw provides the Validation functionality to validate user-created models against a set of constraints.
Use SysML validation suite (SysML ValSuite) in SysML Plugin with this MagicDraw functionality to validate
SysML models.

See MagicDraw User Manual for more information on this MagicDraw functionality.

SysML ValSuite includes seven validation suites:

Validation

1. SysML ValSuite - Activities
This suite contains SysML constraints on the following elements: Control Operator, Control
Value, Discrete, noBuffer, Optional, Probability and Rate.

2. SysML ValSuite - Blocks
This suite contains SysML constraints on the following elements: Binding Connector, Block,
Distributed Property, Part Property, Reference Property, Shared Property, Value Property and
Value Type.

3. SysML ValSuite - Constraint Blocks
This suite contains SysML constraints on the following elements: Constraint Block and Con-
straint Property.

4. SysML ValSuite - Model Elements
This suite contains SysML constraints on the following elements: View and Viewpoint.

5. SysML ValSuite - Non-normative Extensions
This suite contains SysML constraints on the following elements: nonStreaming, Streaming,
Design Constraint, Functional Requirement, Interface Requirement and Performance Require-
ment.

6. SysML ValSuite - Port and Flows
This suite contains SysML constraints on the following elements: Flow Port, Flow Property,
Flow Specification and Item Flow.

7. SysML ValSuite - Requirements
This suite contains SysML constraints on the following elements: Copy, DeriveReqt, Require-
ment and Test Case.

NOTE

If you use SysML ValSuite as the validation criteria, your model will be validated against
all seven SysML validation suites at the same time.

To validate a SysML project:

1. Click Analyze > Validation > Validation on the main menu (Figure 201).

fnalyze

Model Yisualizer

Metrics b

i) Compare Projects

Dependency Matrix b

| validation » yalidation

Yalidation Options
Active Yalidation Options

Erable Ackive Yalidation

Figure 201 -- Validation Menu

2. The Validation dialog will open (Figure 202).

3. Select a validation suite, for example, SysML ValSuite [MD Customization for
SysML::SysML constraints], in the Validation Suite drop-down list to validate your model
against a set of SysML constraints, in this example, all of them (Figure 202).

Validation

[X validation X
Validation |
Walidation Suite: | £ Diagram Merge [UML Standard Profile: MagicDraw Profile: Merge] w
validate Far: E3 Diagram Merge [UML Standard Profile: :MagicDraw Profile: :Merge] L

3 Orphaned Proxies [UML Standard Profile: s validation Profile]

Minimal Severity: |F parameters Synchronization [LUML Standard Profile: validation Profile]
3 Relations Ownership [UML Standard Profile::Yalidation Profile]

£ shape Dwnership [IUML Standard Profile: validation Profile]

E3 gpelling [UML Standard Prafile:: Yalidation Profile]

Exclude elemg

B SysML valsuite [MD Customization For SwsML:SywsML constrainks]
£ SysML WalSuite - Activities [MD Customization For SysML:SysML | SysML YalSuite
Yalidare T_ancel HEln

Figure 202 -- validation Suite Package Selection

NOTE To limit the scope of the constraints to be validated against, select another smaller vali-
dation suite, for example, SysML ValSuite - Blocks to validate against the constraints
in OMG SysML specifications, chapter 8: Blocks. This is useful because, generally, a
user has a limited scope of concerns. Business Analysts, for example, only concern
themselves with Requirements, thus SysML ValSuite - Requirements should be cho-
sen.

4. In the Validate For drop-down list, select either:
e Whole Project to validate the entire SysML project (Figure 203), or

e Validation Selection to validate only specific elements in that SysML project
(Figure 203).

[validation X

Yalidation |
Yalidation Suite: | B3 SwshL WalSuite [MD Customization For SyskL:SywsML conskrainks] W |
Yalidate For: Whole Project [w

Minimal Sewerity;

Exclude elements from read-only modules

[Yalidation Options]

Figure 203 -- Validation Element Selection

5. If you have selected Validation Selection, click the browse button ... to open the Select Ele-
ments dialog. Add elements to to the Selected objects pane using buttons in the middle of the
dialog (Figure 204). Only the element(s) listed in the Selected objects pane will then be vali-
dated (Figure 204). When all required elements are selected, click OK.

158 Copyright © 2006-2011 No Magic, Inc.

Validation

E Select Elements

All daka:

B} Relations

B} HSUY Model

E matrix bernplates [mes
E MO Custamization Foi
B3 MadelingCamain
E UML Skandard Profile
EG= sample profile
EH-Eg SysML Profile [SysML
E IUseiase Description
-5 editor

B[] SysMLL.O

B[] test

IIlF'ﬂ Fimc

| >

#dd

[

Add Al

Add Recursively
Remove

Femoyve Al

Cancel

x]

Selected objects:

Selected |:||:|er|'|:~:

Up Do

Figure 204 -- Select Elements Dialog

. Click the Validate button in the Validation dialog (Figure 203) once elements have been

selected to be validated. When the validation process is completed, the results of the validation
will be displayed in the Validation Results window, usually located at the bottom of the
MagicDraw window (Figure 205).

NOTE e Mark Exclude elements from read-only modules to ignore the elements in read-
only modules from the validation process.
e Validation may take several minutes if your model is large.
A & Yalidation Results

Yalidation Results

BOwEBOF O [Bf K b E /e D e =dbu vl

W | <AL= A4

=

Element

-1 ¢ Wol [HSUYModel: :HSUW Analysi ityEquation]

B w2 ol [HSIWModel: sHSUY Analysis:: CapacityE quation]

Sevetity

@i

Abbreviation

Etror Message

by in the surrounding conkext
sed to bind each parameter of

159

Figure 205 -- Validation Results Window

7. The Validation Results window will show the elements that do not conform to some con-

straints in the selected validation suite. These elements are called "invalid" elements and are
highlighted. If a highlighted invalid element is selected, for example, the Loss of Fluid require-
ment element, a warning will appear (Figure 206).

Copyright © 2006-2011 No Magic, Inc.

Validation

Fy
zrequirement: requirement: o
OffRoadCapability FuelEconomy e
Id="22" Id="22" A
Text="The Hyhrid Text="The Hyhrid A
SV shall have the E SV shall have -
off-road capahility of rarmatically AT
atypical SLV" hetter fuel A
ecanamy than a &

typical LW =

L=t

Figure 206 -- Invalid Elements Highlighted after Validation

8. Place your mouse pointer on the warning icon to display the error message corresponding to
the broken constraint (Figure 207).

sreguiremert: gheguirement:
OffRoadCapability FuelEconomy ,‘{ Requirement I must be unique.
ld="22" [E=%Ra A
Teut ="The Hyhrid Text="The Hyhrid A
SV shall have the E S shall have .
oft-road capability of ramatically o
atypical SLv" hetter fuel P
econamy than a &
Epmal S =
=l . r

Figure 207 -- Error Message Displayed by the Warning Symbol

9. Click the warning icon to display a menu. Then, select either Ignore or Select in the Validation
Results (Figure 208).
e If you select Ignore, the invalid element will then be excluded from the next
validation process.

e If you select Select in the Validation Results, the element will then be selected in
the Validation Results window. This option helps identify the invalid element
instantly, especially when there are a number of invalid elements displayed in the
Validation Results window.

grequirement: m ligrialte
FuelEconomy A Select in Yalidation Results
ld="2.2" e
Text="The Hyhrid A
E: SV shall have -
ramatically ST
hetter fuel A
econamy than a &
typical 5L " =
= "

Figure 208 -- Invalid Element Validation Options

10. The Validation Results window includes the following icons. If you click the:

Validation

° icon (Select in Containment Tree), you will be redirected to the selected invalid
element in the Containment Tree.

° icon (Select Rule in the Containment Tree), you will be redirected to the
broken constraint of the selected invalid element in the Containment Tree.

° icon (Open all diagrams containing the selected element), any diagram
containing the selected invalid element will then be displayed.

° icon (Solve), you can either ignore the selected element (which will thus not
be considered in the next validation process), or select one of the solutions provided
to resolve the invalidity.

~
° |: icon (Run validation with current settings), the validation process will be
executed immediately, using the previous setting.

° icon (Run validation with a new settings), the Validation Suite Packages
Selection dialog will open. You can then change the settings and re-validate your
model again.

NOTE

Additional validation rules / constraints can be added and grouped into a validation suite
(either in a newly-created one or in an existing one).

For more information on the Validation feature, see the Model Analysis in the ‘Validation’ section in the
MagicDraw User Manual.

6.1 Active Validation

This feature enables you to check at once if a model is correct and complete. Unlike the regular Validation fea-
ture in the ‘Validation’ section above, Active Validation will instantly display any errors in the model and suggest
appropriate solutions.

To validate a SysML model, SysML ActiveValSuite package contains six active validation suites:

1. SysML_activeValSuite - Activities
This suite contains SysML constraints on the following elements: Discrete and noBuffer.

2. SysML_activeValSuite - Blocks
This suite contains SysML constraints on the following elements: Binding Connector, Block,
Distributed Property and Value Type.

3. SysML_activeValSuite - Constraint Blocks
This suite contains SysML constraints on the following elements: Constraint Block and Con-
straint Property.

4. SysML_activeValSuite - Non-normative Extensions
This suite contains SysML constraints on the following elements: nonStreaming, Streaming,
Design Constraint, Functional Requirement, Interface Requirement and Performance Require-
ment.

5. SysML_activeValSuite - Port and Flows
This suite contains SysML constraints on the following elements: Flow Port, Flow Property,
Flow Specification and Item Flow.

6. SysML_activeValSuite - Requirements
This suite contains SysML constraints on the following elements: Copy, Requirement and Test
Case.

To turn on the Active Validation feature:

1. Click Analyze > Validation > Enable Active Validation, making sure that Enable Active Vali-
dation is selected (Figure 209). The Active Validation engine will validate in real time the model

Validation

you are working on whenever the need arises, for example, when a project is loaded or an ele-
ment of a model changed.

analyze |

Model Yisualizer

Metrics b
5] Compare Projecks

Dependency Makrix b

| validation b

‘alidation

‘alidation Cptions

Active Yalidation Options

Erable Ackive Yalidakion

Figure 209 -- Enable Active Validation Menu

The following example, a simple SysML project with three requirements and a Copy depen-
dency, illustrates how this Active Validation feature works (Figure 210).

==requiremert== 7
Requirement 2

SICOpY =S

==requiremert== %
Requirement 1

==copyEs "'Iﬂrequirementb; CH
Requirement 3

Figure 210 -- Invalid Elements Detected by the Active Validation

The model in this project was designed so that Requirement 1 copies Requirement 2 and
Requirement 3 at the same time. However, one of the constraints of a ‘Copy’ dependency is
that a requirement cannot copy more than one requirement at a time. Thus, this model is invalid
since some elements are invalid against the constraint.
2. Whenever an element is invalid, it will be highlighted in the diagram («copy» in the example,
Figure 210). On the status bar at the bQTh:om of the cgreen (Figure 211 and 212),
e a notification symbol (info %', warning “** or error), and

e number(s) and severity(ies) of invalid element(s),

will be displayed. For example,

° Y 4 W in Figure 211 means that there are 4 invalid elements violating constraint(s)
of the ‘warning’ severity.

« @ 1E,7W,921in Figure 212 means that there are 1, 7 and 92 invalid elements
violating constraint(s) of the ‘error’, ‘warning’ and ‘info’ severities, respectively.

A aw =l] @ 1E 7w, 921 B J

Figure 211 -- Status Bar with Warning Symbol Figure 212 -- Status Bar with Error Symbol

Validation

3. To find out the reason why an element is invalid, you can either:
e Click the warning symbol on the status bar (Figure 211). The Active Validation
Results window will then open (usually at the bottom of the screen), displaying the
element(s) that does not conform to some constraint(s) in the active validation
suite(s) and the reason for the invalidity (Figure 213).

& Active Validation Results l

Active Yalidation Resulks LI

>'ﬂg £ £ E Q. ';-', - Filter:|£’h s=warning v | <ALl Rl 1 R Mot Ignored W

Elemant Sewerity Abbreviation Errar Message Is Ignored

A requirement can't copy
mare than one requiremant.
A requirement can't copy
mare than one requiremant.

Copy[Requirement] - Requirement2] ik, warning Copy[Aa]

A Copy[Requirement] - Requirernent3] ,fh Warning Copy[A]

Figure 213 -- Active Validation Results

Or

e Select a highlighted invalid element in the diagram («copy» in the example,
Figure 210). Once a highlighted invalid element has been selected in the diagram,
a warning symbol will appear (Figure 214). Place your pointer on the warning
symbol to see the error message related to the constraint, for instance, A
requirement can't copy more than one requirement (Figure 214).

==requirement== 7

Requirement 3

_|Requirement 2
SSCORY=F
==requirement== [#
Requirement 1 l m
L] —
Eécﬁﬁfb;: ‘F ,"'lﬂ requirement can’t copy more than ane requirement.

Figure 214 -- Invalid Copy Dependency Usage

4. Unlike the Validation feature in the Validation section, this Active Validation feature will, in most
cases, also suggest solution(s) to fix model invalidity problem(s). To see the list of appropriate
solution(s) for an invalid element, you can either:

e Right-click the invalid element in the Active Validation Results window
(Figure 213) if you have open this window before.

Or

e Click the warning symbol after you have clicked the invalid element in the diagram
(Figure 214). After clicking, for example, solutions will then be displayed
(Figure 215).

f—'lll\—\ Remove all other redundant Copy dependencyis)
= Remove Copy dependency
Ignare

Select in vYalidation Results

Figure 215 -- Proposed Solutions for the Invalid Copy Dependency

Validation

5. The Active Validation Results window includes the following icons. If you click the:

° icon (Select in Containment Tree), you will be redirected to the selected invalid
element in the Containment Tree.

° icon (Select Rule in the Containment Tree), you will be redirected to the
broken constraint of the selected invalid element in the Containment Tree.

° icon (Open all diagrams containing the selected element), any diagram
containing the selected invalid element will then be displayed.

° icon (Solve), you can either ignore the selected element (which will thus not
be considered in the next validation process), or select one of the solutions provided
to resolve the invalidity.

° icon (Active Validation Options), the Project Options dialog will then open for
you to customize all the options listed under Active Validation.

6. In the example below (Figure 216), a constraint, referenced as “Copy[A]”, is broken. If the solu-
tion suggested by the Active Validation feature, in this case, Remove all other redundant Copy
dependency(s), is selected, the correctness of the model will be satisfied as shown in Fig-
ure 217.

==requiremert== 7
Requirement 2

SSCOpy=s
==reuiremert== |‘_F|l
Requirement 1 - m| Remaove all other redundant Copy dependency(s) |
E‘:-CE'FE":-'T’;: ’fﬁ «’IFIA requirement can’t copy more than one requirement. |
L= Ignare

Select in Yalidation Results

Figure 216 -- Selection of the First Solution

=<requirement== [#
Requirement 2

==reguirement== [#

Requirement 1 -
ﬁmw}: o =<requirement== [F
Requirement 3
Figure 217 -- Valid Elements
NOTE Each implemented constraint has its own appropriate solutions. The Active Validation

feature ensures that SysML modeling is consistent with OMG SysML Specifications.

6.1.1 Active Validation Options

You can customize the Active Validation feature using the five options in Figure 218:

Validation

X Project Options

[Mlizeneral project options

B Diagram Info -
= Aj Eal kg
[C] Symbols properties styles =¥ B B

Defaulk model properties

=] Code Engineering =
Yalidation scope 5] Data
Exclude elements from read-only modules krue
Mark in tree and diagrams krue

x]

General project options

Igniored walidation suites £ Parameters Synchronizak
Minimal severity A warning [UML Skandar. .

Ignored validation suites

[Reset ko Defaults]

Figure 218 -- Project Option Dialog

1. Validation scope (default = data): use this option to limit the scope of elements to be actively
validated.

2. Exclude elements from read-only modules (default = true): if this option is selected (select-
ing the check box means ‘true’), read-only modules, for example read-only profiles, will not be
actively validated.

3. Mark in tree and diagrams (default = true): if this option is selected (selecting the check box
means ‘true’), invalid elements will be marked with small icons in the Containment Tree and
highlighted in the diagrams.

4. lgnored validation suites: you can enter the active validation suite(s) you would like to
exclude from the Active Validation process.

5. Minimal severity: you can specify the minimal severity level of the constraints to be validated
against. There are five levels of severities:

e >=debug: All constraints will be included in the active validation.

e >=info: Constraints with infos, warnings, errors, or fatal severities will be included.

e >=warning (default): Constraints with warnings, errors, or fatal severities will be
included.

e >=error: Constraints with error or fatal severities will be included.

e Fatal: Only constraints with fatal severities will be included.

To open the Active Validation Options dialog:

1. Click Analyze > Validation > Active Validation Options (Figure 219). The Project Options
dialog will open (Figure 218).

Validation

analyze

Model Visualizer
Mekrics k
Compare Projects
Dependency Makrix F
| Yalidation b v alidation
Walidakion Options
| Ackive Yalidation Options
Enable Active Yalidation
-

Figure 219 -- Active Validation Options

2. Go to the General project options pane and select Active Validation > Ignored validation
suites (Figure 218).

To ignore some unused or unimportant active validation suites:

1. Click the Browse L] button. The Select Suites dialog will open (Figure 220).

E Select Suites

[] B3 ©rphaned Proxies [UML Standard Profile::Validation Profile]
3 Parameters Synchronization [UML Standard Profile::Validation Profile]
[] B3 Shape Ownership [UML Standard Profile::Validation Profil]
[] B3 SysML_activevalSuite - Activities [MD Customization For SyslL::SysML constrainks: 5

MO C zation F 1L: conskrainks:

[] B3 SysML_activevalSuite - Canstraint Blocks [MD Customization for SyshL::SysML consk
[] B SysML_activervalSuite - Non-normative Extensions [MD Customization For SysML:Sys
[] B3 SysML_activevalsuite - Parts and Flows [[MD Customization For SysML:SysiL constra
£ SysML_ackivevalSuite - Reguirements [MD Customization For SysMLSysML constrain

< | ¥
Apply Clear all Cancel

Figure 220 -- Select Suites Dialog

2. Select the check boxes in order to ignore the active validation suites, and then click Apply. In
this example, three validation suites will be excluded from the validation process (Figure 220).

NOTE Additional validation rules / constraints can be added and grouped into an active valida-
tion suite (in a newly-created one or in an existing one).

For more information on the Active Validation feature, see the Model Analysis in the ‘Validation’ section in the
MagicDraw User Manual.

166 Copyright © 2006-2011 No Magic, Inc.

Validation

6.2 SysML Constraints

SysML constraints implementation for SysML validation suites and active validation suites include:

Constraint

Binding Connector

Block

Block

Block

BlockProperty

ValueProperty

DistributedProperty

ValueType

ValueType

FlowPort

Constraint Description

(Description excerpts have been taken from the OMG
SysML Specifications 1.2 with permission.)

The two ends of a Binding Connector must
have either the same type or types that are
compatible, so that equality of their values can
be defined.

Within an instance of a SysML Block, the
instances of properties with composite aggre-
gation must form an acyclic graph.

Any classifier which specializes a Block must
also have the «Block» stereotype applied.

If isEncapsulated of a block is true, then the
block is treated as a black box. A part typed by
this black box can only be connected to its
ports or directly to its outer boundary.

The block’s properties must be applied with the
matching stereotype.

e Part property, which is the property that is
typed by Block and has composite
aggregation, must be applied with
«PartProperty».

e Shared property, which is the property that is
typed by Block and has shared aggregation,
must be applied with «SharedProperty».

e Reference property, which is the property that
is typed by Block and has none aggregation,
must be applied with «ReferenceProperty».

e Value property, which is the property that is
typed by value type, must be applied with
«ValueProperty».

The type of a value property must be a value
type.

The «DistributedProperty» stereotype may be
applied only to properties of classifiers stereo-
typed by Block or Value Type.

Any classifier which specializes a ValueType
must also have the «ValueType» stereotype
applied.

If a value is present for the ‘unit’ attribute, the
‘quantity kind’ attribute must be equal to the
value of the ‘quantity kind’ attribute of the refer-
enced unit.

A FlowPort must be typed by a Flow Specifica-
tion, Block, Signal, or Value Type

Directly Derived
specified
in OMG
SysML

spec
8.3.2.1

SysML
spec

8.3.2.2

8.3.2.2

8.3.2.2

8.3.2.2

8.3.2.4

8.3.2.10

8.3.2.10

9.3.2.3

from OMG

Validation

Constraint

FlowPort

FlowPort

FlowPort

FlowPort
(non-active)

FlowPort

FlowProperty

FlowProperty

FlowSpecification

ltemFlow

Constraint Description
(Description excerpts have been taken from the OMG
SysML Specifications 1.2 with permission.)

If the FlowPort is atomic (isAtomic=True), the
direction must be specified (has a value) and
isConjugated must not specified (has no
value).

If the FlowPort is nonatomic and if all of the
Flow Properties of the Flow Specification typing
the port have ‘in’ direction, the FlowPort direc-
tion will be ‘in’ (or ‘out’ if isConjugated=true). If
all the Flow Properties are ‘out’, the FlowPort
direction will be ‘out’ (or ‘in’ if isConju-
gated=true). If the Flow Properties are both ‘in’
and ‘out’, the direction will be ‘inout’.

A FlowPort can be connected (via connectors)
to one or more flow ports that have matching
Flow Properties. There are three options in
matching Flow Properties:

e 1. Type Matching: The type being sent is the
same type or a sub-type of the type being
received.

e 2. Direction Matching: If the connector
connects two parts that are external to one
another, then the direction of the Flow
Properties must be opposite, or at least one
of the ends should be ‘inout’. If the connector
is internal to the owner of one of the flow
ports, then the direction should be the same
or at least one of the ends should be ‘inout’.

e 3. Name Matching: If the type and direction
match several Flow Properties at the other
end, the property that has the same name at
the other end is selected. If there is no such
property, then the connection will then be
ambiguous (ill-formed).

The default direction of the atomic FlowPort
should be set to ‘inout’ when creating a new
atomic FlowPort or changing nonatomic to
atomic type.

A FlowPort can only be applied to a port which
is owned by a Block or its subtype.

FlowProperties must be typed by a ValueType,
Block, or a Signal.

A Flow Property must have its direction speci-
fied and the default value of the direction
should be ‘inout’.

A FlowSpecification can be used as a type of a
FlowPort only.

An ItemFlow itemProperty must be typed by a
Block or by a ValueType.

Directly
specified
in OMG
SysML
spec

9.3.2.3

9.3.2.3

9.3.2.3

9.3.24

9.3.2.6

Derived
from OMG
SysML
spec

9.3.2.3

9.3.2.3

9.3.24

9.3.2.5

Validation

Constraint

ltemFlow

ltemFlow

ltemFlow

ltemFlow

ltemFlow

ConstraintBlock

ConstraintBlock

ConstraintBlock

ConstraintProperty

(non-active)

Discrete

NoBuffer

Overwrite

AllocateActivityParti-
tion

Constraint Description
(Description excerpts have been taken from the OMG
SysML Specifications 1.2 with permission.)

An ItemProperty must be a property of the
block that owns the source and the target.

The type of itemProperty should be the same
or a subtype of the conveyedClassifier.

An Item property cannot have a value if there is
only one association between the source and
the target of the InformationFlow.

If an ItemFlow has an itemProperty, its name
should be the same as the name of the item
flow.

The conveyed classifiers must be the same or
subtype of classifier that type flow property of
flow specification.

A ConstraintBlock cannot own any structural or
behavioral elements beyond:

e constraint parameters.

e constraint properties that hold internal
usages of constraint blocks.

e binding connectors between its internally
nested constraint parameters.

e constraint expressions that define an
interpretation for the constraint block.

e general purpose model management and
crosscutting elements.

Any classifier which specializes a Constraint-
Block must also have the «ConstraintBlock»
stereotype applied.

Binding connectors are used to bind each
parameter of the constraint block to a property
in the surrounding context.

A property to which the «ConstraintProperty»
stereotype is applied, must be owned by a
SysML Block.

The «discrete» and «continuous» stereotypes
cannot be applied to the same element at the
same time.

The «nobuffer» and «overwrite» stereotypes
cannot be applied to the same element at the
same time.

The «overwrite» and «nobuffer» stereotypes
cannot be applied to the same element at the
same time.

The represented element of the activity parti-
tion which is applied with «AllocateActivityPar-
tition» stereotype, should be the Property.

Directly
specified
in OMG
SysML
spec

9.3.2.6

9.3.2.6

9.3.2.6

9.3.2.6

10.3.2.1

10.3.2.1

10.3.2.2

11.3.2.3

11.3.2.4

11.3.2.5

Derived

from OMG

SysML
spec

9.3.2.6

10.3.2.1

15.3.2.3

Validation

Constraint

AllocateActivityParti-
tion

Copy

Copy

Copy

Copy

Copy

Requirement

Requirement

TestCase

streaming

streaming/non-
Streaming

nonStreaming

functionalRequire-
ment

interfaceRequire-
ment

performanceRe-
quirement

designConstraint

Constraint Description
(Description excerpts have been taken from the OMG
SysML Specifications 1.2 with permission.)

An Action appearing in an AllocateActivityParti-
tion will be the /client (from) end of an allocate
dependency. The element that represents the
AllocateActivityPartition will be the /supplier
(to) end of the same allocate dependency.

A ‘Copy’ dependency may only be created
between two classes that have the «require-
ment» stereotype, or a subtype of the «require-
ment» stereotype applied.

The text property of the client requirement is
constrained to be a copy of the text property of
the supplier requirement.

A requirement cannot copy more than one
requirement.

‘Copy’ dependencies should not form a cyclic
graph.

If the supplier requirement has sub require-
ments, copies of the sub requirements are
made recursively in the context of the client
requirement. ‘Copy’ dependencies are created
between each sub requirement and the associ-
ated copy.

A nested classifier of a class that is stereo-
typed by «requirement» must also be stereo-
typed by «requirement».

A Requirement ID must be unique.

The type of return parameter of the stereo-
typed model element must be VerdictKind.
(Note this is consistent with the UML Testing
Profile.)

The activity has at least one streaming param-
eter.

The «streaming» and «nonstreaming» stereo-
types cannot be applied to the same element at
the same time.

The activity has no streaming parameter.
Must be satisfied by an operation or a behavior.

Must be satisfied by a port, connector, item
flow, and/or a constraint property.

Must be satisfied by a value property.

Must be satisfied by a block or a part.

Directly
specified
in OMG
SysML
spec

16.3.2.1

16.3.2.1

16.3.2.3

16.3.2.5

C1.2

C1.2
C.22

c22

c22

c22

Derived
from OMG
SysML
spec

15.3.2.3

16.3.2.1

16.3.2.1

16.3.2.1

16.3.2.3

C1.2

Feature-based Compartments

Constraint Constraint Description Directly Derived
(Description excerpts have been taken from the OMG specified |from OMG
SysML Specifications 1.2 with permission.) in OMG SysML
SysML spec
spec
PropertySpecific- 1 |A classifier to which the «PropertySpecific- 8.3.2.7
Type Type» stereotype is applied must be refer-
(non-active) enced as the type of one and only one
property.
PropertySpecific- 2 | The name of a classifier to which a «Proper- 8.3.2.7
Type tySpecificType» is applied must be missing

(The "name" attribute of the NamedElement

(non-active)
metaclass must be empty).

PropertySpecific- A |Classifiers with the «PropertySpecificType» 8.3.2.7
Type stereotype are owned by the block which owns
(non-active) the property which has the property-specific

type.
PropertySpecific- B |Property which is typed by the «PropertySpeci- 8.3.2.7
Type ficType» should be owned by block or subtypes

of block.

(non-active)

SysML Plugin feature-based compartments allow you to display additional compartments in internal properties.
There are six feature-based compartments:

e :values
e :parts

rreferences

:constraints

:properties (formerly :UML properties)

:operations

For any given property, these compartments will show information from the classifier of the property (Fig-
ure 221, right-hand side) in conformity with SysML specifications outlined in the ‘Compartment on Internal
Properties’ section.

Feature-based Compartments

==hlock== =
box : BallBox

==hlock==
BallBox

pmpertie s

stresz [StressType

pmopeties
stress | StressType
(ETREATe S
cubes : Cube [0.%]
cylinders ;. Cylinder [0..*]
parts
balls : Ball [0..%]
valuwes
depth: m=1.0
height - m=1.0
swiclth : m=1.0
corsaRint s
wolEq - WolumeEquation

JefeEnte s
cubes | Cube [0..%]
cylinders : Cylinder [0.*]

balls : Ball [0..%]

Jconsaints
wolEqg : WalumeEguation

testotress) maxSiress | Real 1. Boolean

copeations
testStress) maxStress | Real 1. Boolean

Figure 221 -- Compartments in a Block vs. Feature-based Compartments in an Internal Property

For any property typed by a Block, feature-based compartments will contain the same information as that of the
compartments on the Block symbol, such as values, parts, references, constraints, UML properties, and opera-

tions compartments.

7.1 Expanding and Suppressing Feature-based Compartments

You can expand or suppress feature-based compartments using either (i) the Symbols Properties dialog or (ii)

the property shortcut menu.

(i) Using the Symbol(s) Properties Dialog of an Internal Property

To expand or suppress a feature-based compartment(s) using the Symbol(s) Properties dialog:

1. Either right-click the property symbol and select Symbol(s) Properties... (Figure 222) or select

the property and press Alt + Enter. The Properties dialog will open.

m
==hlocks== = |
b E

Specification Enter
stress : Stres Symbol(s) Properties. . Alk+Enker
cubes : Cube a0 To ’
cylinders ;. Cyl Refactar b
balls - Bal 0.1 Select in Containment Tree Alk+B

Related Elements b
depth ;o m=1.0
height : m=1. Stereotype 3
weicth : m = 1.1

Edit Comparkment b
wolEg : Walumr Show Stereotypes b
HesiStressCn Show Cwner b
= YWrap Waords

Figure 222 -- Symbol(s) Properties... Shortcut Menu

Feature-based Compartments

2. The symbol properties for expanding or suppressing feature-based compartments will be listed
under SysML Internal Properties Compartments (Figure 223).

Xrro perties E|

Part | = <PartProperty ==
2 = |
~
Bl
SUppress :properties []False
Suppress references []False
Suppress parts []False
Suppress (values []False
Suppress conskrainks []False
Suppress joperations []False
w
Context-Specific ¥alues
Apply Style: |Default W
[] Make Default

Figure 223 -- Symbol(s) Properties Dialog - SysML Internal Properties Compartments

To expand a feature-based compartment:

e Set the value of the corresponding symbol property to false by clearing the check box. For
example, to show :values and :parts compartments, clear the Suppress :values and
Suppress :parts check boxes.

To suppress a feature-based compartment:

e Set the value of the corresponding symbol property to true by selecting the check box. For
example, to hide :properties and :operations compartment, select the Suppress
:properties and Suppress :operations check boxes.

Feature-based Compartments

(if) Using the Property Shortcut Menu

The submenus for suppressing or expanding feature-based compartments are listed inside the SysML Internal
Properties Compartments option on the property shortcut menu (Figure 224).

]
==hlock== = |
box : BallBox "
: Specification Enter
pmpesties
stress: StressType Symbol{s) Properties. .. Alt+Enter
SEEEmTE S
cubes : Cube [0.4] Go To 3
i_cyllnders : Cylincer [0.7] RafSeEar .
| pats] :
balls ; Ball [0..#4] Select in Containment Tree Alt+B
vakies i Related Elements >
depth:m=10
height : m=1.0 Sterentype]
width: m=1.0
Edit Compartment 3
.'cons@rahés
wolBg : WolumnEguation Show Sterectypes »
‘opeations
+HestStress(maxStress Real) Shows Quney 4
& ! WWrap Words
Showe Tagged Yalues 3

Showe Default Yalue
Shows Slat Type 3

Suppress Structure

| SysML Internal Properties Compartments 4 Expand Al
Context-Specific Values b Suppress 4l
Type } Suppress :propetties
{Unspecified) Suppress references
o Suppress ;parts
0.1 Suppress ;values
o..* Suppress ;conskraints
1 Suppress operakions

Figure 224 -- SysML Internal Properties Compartments Shortcut Menu

To suppress a feature-based compartment:

e Select the submenu for that compartment.

To expand a feature-based compartment:

e Clear the submenu for that compartment.

To suppress all feature-based compartments:

e Select Suppress All.

To expand all feature-based compartments:

e Select Expand All.

Context-Specific Value Compartments

7.2 Displaying Options in Feature-based Compartments

Elements displayed in the feature-based compartments of a property can be customized using the symbol
properties listed under SysML Internal Attributes and SysML Internal Operations in the Symbol(s) Proper-
ties dialog of each property (Figure 225).

To customize the display of the elements in the feature-based compartments:

e Select or clear any of the check boxes as shown in Figure 225.

E Properties

Part | <<PartProperty == | SysML Inkernal Block Diagram

94; =t =g

=
Show Attribute Wisibility []False
Shows Atbribute Type krue
Show Akkribute Stereoktype []False
Show attribute Properties krue
Show attribute Constraints []False
Show Aktribute Defaulk Walue krue

=
Shiow Operation Jignature Lrue
Shioww Operation Wisibiliky []False
Shows Operation Stereotype krue
Shows Operation Properties Lrue
Show Operation Constraints []False
Show Operation Parameters Direction Kind []False

Show Attribute Type
Shiow atbribuke bype in inkernal properties comparkments

apply Style: |Default v|
[] Make Default

Figure 225 -- Symbol(s) Properties Dialog: SysML Internal Attributes and Operations

8.1 Progressive Reconfiguration

Progressive Reconfiguration enables MagicDraw SysML to handle a wide range of systems engineering config-
uration tasks. Progressive Reconfiguration continuously applies the following values:

175 Copyright © 2006-2011 No Magic, Inc.

Context-Specific Value Compartments

e Static class-level default values.

e Inherited Property-specific initial values.
e Redefined Property-specific initial values.
e Property-specific initial values.

Property-specific initial values are specific to the usage of a Block as a Part Property in a higher context (i.e.
another structured block or "assembly"). If there are many Part Properties of the same type, these Part Proper-
ties may have different property-specific default values and will then be initialized differently.

Property-specific initial values are managed by the higher-context structured block, which owns the Part Prop-
erties that initialize or configure their (possibly different) values on instantiation. For example, the generic
capacity of a FuelTank (not any particular one) is 40 liters (class-level default value). For a vehicle, however,
the generic capacity of its FuelTank is 46 liters. An abstract Vehicle block will thus configure its tank:FuelTank
part property by initializing it with a new capacity value. This can be done with Progressive Reconfiguration that
will assign the instance specification tank:FuelTank to the property tank:FuelTank of the Vehicle block (Fig-
ure 226).

bdd [Model] Vehicle[\Iehicle.bdd: HOWT O define property-specific default walues {progressive configuration) u

<<block>> g < = _
Vehicle —tank, FuelTank <<explanations=
1 s The static {class-lewel)
B capacity : L = 40.0{unit = Litre- 7| default value will be
tank : FuelTank [1] =tan|§ [P { ! overridden
In MD SysMLyou can drdg n' drap =<initialisation>>
InstanceSpecifications ftom the browser parts
onto parts in an |BD to assign
property specific default finitial values O tank |
T - <<initial values3 . ‘:.{'T:r:’} T
<<initialisess> 1 . [~ —{voumay optiohally organise the
<=illustration anly = — M _ InstanceSpecifications that carry
capacity = "46.0%unit = Litre} your property-specific values in
|l | a stereotyped Model.

<-<=Rationale>> =]
The property-specific default values {ak.a.
property specific initial walues) for each
part are defined using the Slots of an
Instancespecification of matching type.

The Magicdraw UML SysML plugin
structure-and-value HOWTO guide

F.
=
7 Vehicle
<<mexts>

_ -

Figure 226 -- Progressive Reconfiguration

For more information on Progressive Reconfiguration, see http://training.nomagic.com.

8.2 Deep Reconfiguration

Deep Reconfiguration enables you to configure deep-nested part(s) with context-specific value(s). Consider, for
example, the case of a truck reusing a complex WheelHubAssembly for three pairs of wheels, each with differ-
ent characteristics. Although the basic WheelHubAssembly might be suitable for a range of vehicles (a car,
touring car, and minivan), it is not nearly suitable for a large truck. Some of the WheelHubAssembly parts and
subparts required for a truck are larger and must be stronger to handle heavy loads. They include:

e the diameter of the Tire, TireBead, and Rim will be larger.
e the inflationPressure value of the WheelAssembly will be higher.
e the LugBoltJoint will be subject to greater torque and boltTension.

Context-Specific Value Compartments

e the LugBoltThreadedHole will have larger lugBoltSize and threadSize.

In this case, Progressive Reconfiguration will fail because the new configuration requirements "cascade"
throughout the entire complex WheelHubAssembly from the outermost context to the deepest part. Since no
Progressive Reconfiguration approach can handle this deep reconfiguration of complex assemblies, you need
to use Deep Reconfiguration.

You can start with a completely new TruckWheelHubAssembly that configures a completely new Truck-
WheelAssembly, right down to a TruckLugBoltJoint.

However, you could use, instead, SysML PropertySpecificType strategy, which is a set of "on-the-fly" exten-
sions (subtypes) of each Block used in a complex assembly hierarchy, to afford a point of redefinition of the Part
Properties and their Value Properties as required. See the ‘PropertySpecificType‘ section in OMG SysML spec-
ifications.

For more information on Deep Reconfiguration, see http://training.nomagic.com.

8.3 Context-Specific Value Compartments

The purpose of Context-specific Value Compartments is to show various values as a result of a reconfigured
selected context. In the FuelTank example [see (8.1) Progressive Reconfiguration above], the capacity of a
FuelTank in a Vehicle context is reconfigured to 46 litres. In the WheelHubAssembly example, [see (8.2)
Deep Reconfiguration above], the diameter of the Tire, Tire Bead and Rim, the inflationPressure of the
WheelAssembly, etc., in a Truck context will be reconfigured to suit the truck.

This section contains the following subsections:
(8.3.1) Advantages of Context-Specific Value Compartments.
(8.3.2) Using Context-Specific Value Compartments.
(8.3.3) Displaying Context-Specific Value Compartments.
(8.3.4) Selecting the Context of Context-Specific Value Compartments.

(8.3.5) Customizing Context-Specific Value Compartment Display.
(8.3.6) Value Propagation.

You can see a sample of a Deep Reconfiguration project by opening context specific values.mdzip in the
<md.install.dir>/samples/SysML directory.

8.3.1 Advantages of Context-Specific Value Compartments

Context-Specific Value Compartments allow you to:

e create different configurations for the same structure and display them directly in IBD
diagram(s)

e have different values for the same part in different contexts

e assign a different initial value to an inherited property

8.3.2 Using Context-Specific Value Compartments

A Context-Specific Value Compartment is a part symbol compartment. Only part symbols can have Context-
Specific Value compartments. A Context-Specific Value compartment displays the values of the properties
(parts) reconfigured in a selected context (Progressive or Deep Reconfiguration).

An example of Progressive Reconfiguration is when the values of y and z of a Location are reconfigured to
1 in the Thing context. Thus, the “values (Thing)” compartment in the l:Location part (in the Thing package)
will display 1 as the values of y and z (Figure 227).

Context-Specific Value Compartments

An example of Deep Reconfiguration is when the value of x of a Location in the UniverseContext package is
reconfigured to 3 in the UniverseContext context. Thus, the “values (UniverseContext)’ compartment in the
I:Location part (in the t1:Thing part in the UniverseContext package) will display 3 as the value of x. If Uni-
verseContext is selected, the value of z, instead of x, will be reconfigured to 2 (Figure 227).

bdd [Madel] Datal @ EDD U
Lucatiun| Thing | Universe
==hlocks=:= ==hlack=:= ==hlock==
Location Thim Universe £ ey
d STUSEST 14 : Thing
values fpats . parts
% Real=0 |: Location =Tl o | t1 : Thing = U1 d =il
v Real =0 t2: Thing = Lt2 [=
z:Real=0 |
==hlock== \ ==hlock==
| : Location l ==hlock== ==hlock== = U1l : Location
e [1: Thing t2: Thing Vol [zo e
¥ Real=0 L . p N
. e pants parts
v Real=10 R - Lacation = T I Location =T \
z:Real=0 |
values(Thing) | ==hlock== ==hlock== A
y="1 | I: Location I : Location <=ghss
2 values valkes !
| x:Real=0 % Real=0
y:Resl=0 v Real=0 A
==hblock== | z:Real=0 z: Real=0 Y
T.1: Location =z d values (Universe | values{Usiverse) ==hlock=»
y="1" z="2" U.t2 : Thin
=
UniverseContext
. SHlEEs E ==hlocks= =
UniverseContext L otoe UC.u : Universe
parts L _
U Universe = LC L qd tt=uUcutt
2=UCut2
==hlock== =
u : Universe a=hlock== z=hlock==
- .u.t1 : Thing k2 : Thing
e UC.u.t1 : Thin UC.ut2 : Thin
12 Thing = LIt I=UCutll I=UCut2l
t2: Thing = U112 2
==hlock== ==hlock==
==block== = | 2 = | UC.u.t1.l : Location UC.u.t2.1: Location
11 : Thing 12 : Thing
x="q" y="3"
pacts pacts
| Location =T | Location =T
==hlock== ==hlock==
1: Location 1: Location
Sralyes Sralyes
¥ Real=0 ¥ Real=0
v Real=0 v Real=0
z:Real=0 z:Real=0
vahwes (Universe Condexd) vahwes (Universe Condexd)
y = g =

Figure 227 -- Block Definition Diagram

8.3.3 Displaying Context-Specific Value Compartments

You can display (or suppress) the Context-Specific Value Compartment of a part using either (i) the Symbol(s)

Properties dialog or (ii) the part shortcut menu.

(i) Using the Symbols Properties Dialog

178

Copyright © 2006-2011 No Magic, Inc.

Context-Specific Value Compartments

To open the Symbol(s) Properties dialog:

e Either right-click the part symbol and select Symbol(s) Properties... or select the part symbol
and press Alt + Enter.

To display a compartment using the Symbol(s) Properties dialog:

e In the Symbol(s) Properties dialog, set the value of the Suppress Context Specific Values

symbol property under the Context Specific Values group to false by clearing the check box
(Figure 228).

To suppress a compartment using the Symbol(s) Properties dialog:

e In the Symbol(s) Properties dialog, set the value of the Suppress Context Specific Values

symbol property under the Context Specific Values group to true by selecting the check box
(Figure 228).

E Properties E|

Part | <<PartProperty ==
E .S
Shiow Operation Signature krue
Shows Operation Yisibility true
Shiowe Operation Stereckype true
Shiowe Operation Properties true
Shows Operation Canstraints [False
Shows Operation Parameter... [| False
Suppress Conkext-Specific ... true
Context of Context-Specifi,.. &= w
Suppress Context-Specific ¥alues
Suppress Context-Specific Yalues compartment
Apply Style: |Defaulk w
[] Make Default

Figure 228 -- Symbol(s) Properties DialogSymbol(s) Properties Dialog - Suppress Context Specific Values
(ii) Using the Part Shortcut Menu

To display a compartment using the part shortcut menu:

e On the shortcut menu, clear the Suppress Context Specific Values option under the Context
Specific Values group (Figure 229).

To suppress a compartment using the part shortcut menu:

e On the shortcut menu, select the Suppress Context Specific Values option under the
Context Specific Values group (Figure 229).

Context-Specific Value Compartments

Universe
Specification Enker
==hlock=>
Universe Symbolis) Properties. . Alt+Enter
parts
1 : Thing = LIt1)l b
12 Thing = LI12 Select in Containment Tree Alt+E
Related Elements »
==hlock== = | ==hl
11: Thing t2: Convert Ta]
parts Skereotype »
| Location =Tl I: Loc
Autosize
==hlock== = ==hl)
I: Location I:Lo Edit: Compartment »
Svales Show Sterentypes »
¥ Real=0 % R
v Real=0 v R Show Constraints
z:Real=0 z: Ry
Shows Cwner »
vale s [Umiverse | vl
x=0 x=0 ‘Wrap Words
y=rn y="
z="2" =" Show Classifier
& Show Tagged Yalues »

Showe Defaulk value

Shaws Slat Type »

Suppress Struckure

SyshL Internal Properties Compartments]

| Context-Specific Yalues r | | Suppress Context-Specific Yalues

Type 4 Context 4
(Unspecified)

1]

0.1

D. .*

Figure 229 -- Shortcut Menu for Suppress Context Specific Values

8.3.4 Selecting the Context of Context-Specific Value Compartments

The properties’ values shown in the Context-Specific Value Compartment of a part and the compartment label
will change according to the selected context. For example, if the selected context is A then the compartment
label will be values (A).

To select a context using the shortcut menu:

e Right-click the part and select Context Specific Values > Context (Figure 230).

Context-Specific Value Compartments

Universe

==hlock==
Universe

1 : Thing = L1
t2 : Thing = LI12

parts

Specification
Symbol{s) Properties. .,
GoTo

Select in Conkainment Tree

Enter

#Alk+Enker
4

Alk+E

Related Elements »
==hl

t2:1

==hlock==

1 : Thing Converk Ta]

parts

Stereatype]
I Location=T. B

|2 Loca

u Aukosize
==hl

I:Lo

==hlock=>
1: Location
Jvalme s
x:Real=0
v Real=0
z:Real=0

Edit Compartment]

§ Shows Skereotypes]
x: Re

y:Re

I:Re

Shows Constraints

Show Ownier »

£

values(Universe)
Wrap Wiords

]
Zi=

Shows Classifier

[e
o
LS

[

Show Tagged Yalues]

Shows Default Yalue
Show Slot Type]

Suppress Structure

SysML Internal Properties Compartments]

| Context-Specific Yalues ’ | Suppress Context-Specific Yalues

Thing | Cantext]

Uniserse |

Type

(Unspecified)
a

Mone

Shared

Composite

Figure 230 -- Shortcut Menu - Select Context

8.3.5 Customizing Context-Specific Value Compartment Display

You can display or hide the elements types in the Context-Specific Value Compartment of a part using either (i)
the Symbol(s) Properties dialog or (ii) the part shortcut menu.

(i) Using the Symbol(s) Properties Dialog

To display or hide element type(s) using the Symbol(s) Properties dialog:

1. Right-click the part and select the Symbol(s) Properties... option.

2. Three display modes are available in the Symbol(s) Properties dialog (Figure 231):
e None: to hide types

e Name: to display the names of the element types
e Qualified Name: to display the qualified names of the element types

Context-Specific Value Compartments

E Properties

Part | < <PartProperty == |
o =t ey
Show Tagged Yalues on Shape ~
Show Tagged Yalues Stere... krue
Show Qualified Mames For P, [] False
Show Diefault Yalue [] False
Suppress Struckure [False
Showe Slot Type Mone
Symbal ID B
Symbol Bounds Marne
=) Cualified Mame
Suppress (UML properties []False
Suppress :references [] False
SuLnnkace rmarke [Falea ‘:
Show slot Type
Show slot bypes in default values compartment:

Figure 231 -- Symbol(s) Properties Dialog - Show Slot Type

(if) Using the Part Shortcut Menu

To display or hide element type(s) using the part shortcut menu:

e Right-click the part to open its shortcut menu, select Show Slot Type, and then select a display
mode (Figure 232).

182 Copyright © 2006-2011 No Magic, Inc.

Context-Specific Value Compartments

Thing |
Specification Enter
==hld
Th Symbaol{s) Properties, .. Alt+Enter
fd
|': Locatio Gl b
Select in Containment Tree Alt+E
==hioc Felated Elements]
I: Local
Canvert To]
v
¥ Real
Y Resl Stereatype]
23 e Aukosize
e
% :ED ” Edit Compartment »
_ g
i = Show Sterectypes]
B Show Constraints
==hloc]
]
Al Shows Owner
y="1" “Wrap Words
z="1" Show Classifier
Show Tagged Yalues »
Show Default Yalus
| Show Slok Type » |[Maone
Suppress Structure Mame
SysML Internal Properties Compartments » Cualified Mame
Conkext-Specific Walues »
Type »

{Unspecified)

More

Shared

Composite

Figure 232 -- Shortcut Menu - Show Slot Type

8.3.6 Value Propagation

The Value Propagation mechanism enables values that are not overridden by the values from the selected con-
text in a Context-Specific Value Compartment to be displayed.

Assuming the property and the Value Propagation options are enabled, the value available in the next context
will be used to reconfigure the property if there is no value in the selected context to reconfigure the property.
However, if there is no value available in any context, the class-level default value will be displayed in the Con-
text-Specific Value Compartment, indicating that the property is not reconfigured at all.

See Figure 233 for an example of the Context-specific Values Compartments having the Value Propagation
enabled.

Context-Specific Value Compartments

bdd [Model] Data[@ BOD U
Lucatiun| Thing | Universe
==hlock== ==hlock== ==hlock== wehlockes
Location Thing Universe U1 : Thin
values parts . pants
%:Real=0 I:Location=T1 o | 1 Thing = U1 4 }_{SE; I=uUtl
v:Real=0 | 12 Thing = LIt2 [
:Real=0
" Sl ==hlack== | \ ==hlock== = |
I: Location ==hlocks= =shlock=> [1111 : L ocation
e | 1 : Thing 12 Thing A
¥ Real=0 L . p 4
: e parts parts
v @ Real =0 = 0 Lacation = T I Location = T \
7 Real=0 |
values(Thing) | ==hlock== ==hlock== 4
x=0 | I': Location 1: Location 22uzdes
i ; ..1 n svales svalues 4
| %:Real=0 %:Real=0
| v Real=0 v:Real=0 \
zehlockss Z: Real=0 z:Real=0 A
L.1: Location = d valesiliniverse] vale 5 {Universe) <<bIDCk:_=b
—nqn x=0 w=0 W.t2 : Thin
y-" i y=nn =
=R 7= 7 =nqn
Universe Context
) ==hlock== <=hlocks== =
UniverseContext UC.u : Universe
pants o —
L2 Uriverse = LIC u Gqfe» t=UC.utl
= 12=UCut2
==hlack== = |
u : Universe “UDCK% ==hlock==
; SR H q .u.t2 : Thing
pants UC.u.t1 : Thin UC.u.t2 : Thin
t1 : Thing = 11 I=UCutll I=LCuta |
t2: Thing = U2 A
==hlock== ==hlock=>
==hlocke== = ==hlock== UC.ut1. : Location UC.ut2.1 : Location
11 : Thing 12 : Thing
x = “3" Y = ||3||
Jparts Jparts
| Location =T | Location =T
==hlock== ==hlock== = |
I: Location I: Location
svales svales
¥ Real=0 ¥ Real=0
v Real=0 v Real=0
Z:Real=0 Z:Real=0
value s(Uiniverse Contexd) value s(Uiniverse Conted)
x="3" x=0
y=" = m
7 = o Z o nqn

Figure 233 -- BDD Value Propagate

In the UniverseContext package, only the value of x of a Location is reconfigured to 3 in the UniverseCon-
text context. The values of y and z are not set by the selected context. Since the value propagation is enabled,
the next context, Universe, is considered. In the Universe context, the value of z is set to 2. However, the
value of y is still missing; therefore, the next context, Thing, is considered.

In the Thing context, the value of y is set to 7. Now, all attributes of the Location are set as follows:

ex=3
oy=1
ez=2

For more information on Value Propagation, see http://training.nomagic.com.

184 Copyright © 2006-2011 No Magic, Inc.

Context-Specific Value Compartments

To enable the value propagation mechanism:

1. Click Options > Project on the main menu (Figure 234) to open the Project Options dialog
(Figure 235).

Options

Project

Maodules
Environrnent

Perspectives]

Loak and Feel]

Interface Style *

Figure 234 -- Project Options Menu

2. Select General project options > SysML.
3. Select the Propagate SysML Values check box and click OK (Figure 235).

P Project Options

------ [Pl General project options

General project options

------ B Diagram Info :

= F L
-0 Symbols properties styles 24 B EBY
=1 Default (Default) =

B & Shapes <project, dir=
G2 Paths Maodules path <install, root =\ profiles
% Liagram <inskall,root =\modelLibraries
% Sterectypes Enable dot notation for associations [false

- Default model properties Change ownership of non-navigabl... krue

Sk] Code Enai i
B¢ Code Engineering Qualified name display style Absolute

~gi” Code Generation _
gl Reverse #uko synchronize Parameters and ... true
én_J Java Language Opkions =
gl C++ Language Options alidation scope ata
CH+L Opti Yalidat =] Dat
gl T Language Cptions Exclude elements from read-only m... [+] true
-] CORBA IDL 3.0 language of Mark in tree and diagrams true
~gal DOL Language Options yp :
2 guage p Ignored walidation suites £ Parameters Synchronization
Minimal severity ;_"g_-.. warning [UML Standard Prof
=

Propagate SysML Yalues

true

Figure 235 -- Project Options - Propagate SysML Values

NOTE Clear the Propagate SysML Values check box to disable the Value Propagation mech-
anism.

Structure Browser

The Structure browser allows you to browse for deep nested structures of the structure classifier in your model.
The property nodes, which are shown inside the property node (the parent property node), are the properties of
the classifier that type the parent property node. In Figure 236, the node: diameter:m represents the property:
diameter:m of the classifier: Cylinder Liner and also the property: cylinderLiner : Cylinder Liner is the prop-
erty of the classifier: Engine.

i %'g Structurel

Structure *
Bl&|2 o m Yy
E--E=] Data L
- Battery
- Brake Swskem
- Carn Shaft
B-E Car
L——_II__H +engine @ Engine
=] +cylinderLingr @ Cylinder Liner
el dismieter §
- [H +eylinderHead @ Cylinder Head
- H +inkakeWalves : Intake Yalee [8]
- +exhaustialves | Exhaust Valve [
- H +pistans | Piskon [4]
- [E +skarterMotar @ Skarker Maokor
- H +injectionMaozzles : Injection Mozzl
- +distributor @ Diskribukor
- CH +sparkPlugs : Spark Plug [4]
- CH +camshaft : Cam Shaft hd

Figure 236 -- Structure Browser

9.1 Opening Structure Browser

You can open the Structure browser by clicking Window > Structure on the main menu (Figure 237).

Structure Browser

indiow |

Y Messages Window Chrl4-M
B Containment
| % Skructure

g Inheritance

i Diagrams

Model Extensions
Search Resulks
Documenkation

Zoarm

E] Gk m g § G

Properties

Reset Windows Configuration Chrl+Shift+h

Close All Diagrams But Current Ckrl+35hift+F4

Close All Diagrams Crrl+al+F4

Figure 237 -- Opening Structure Browser from Main Menu

9.2 Customizing Structure Browser Display

You can customize the display of the Structure browser by using:

(9.2.1) Structure Browser Shortcut Menu
(9.2.2) Structure Browser Toolbar

9.2.1 Structure Browser Shortcut Menu

You can customize the display of the Structure browser by right-clicking its background to open its shortcut
menu, and then mark/clear display option(s) on the menu.

Displaw as Plain List
Show Inherited Struckure
Show Full Types in Browser

Show Applied Stereatypes in Browser

[<IT=T<]

Shows Auliary FResources

Filker ...

Figure 238 -- Opening Structure Browser from Context Menu

9.2.2 Structure Browser Toolbar

You can also customize the display of the Structure browser by clicking the icons on its toolbar.

B as o RY

Figure 239 -- Structure Browser Toolbar

Structure Browser

Table 7 -- The Structure Browser Toolbar Icons

Icons Function

To display the browser as a plain list of classifi-
ers.

B | [@d

To show inherited structures.

To show full type in the browser.

o

To show applied stereotypes in the browser.

s
-
-
-

To show auxiliary resources in the browser.

il

To filter type(s) of elements to be shown in the
browser.

9.3 Display Options

You can select to customize the Structure browser in six display options:
(9.3.1) Display as Plain List
(9.3.2) Show Inherited Structure
(9.3.3) Show Full Type in Browser
(9.3.4) Show Applied Stereotypes in Browser
(9.3.5) Show Auxiliary Resources
(9.3.6) Filter

9.3.1 Display as Plain List

The classifiers of structure in your model will be normally displayed in a Package, Model, or Profile hierarchy.
Use the Display as Plain List option to show all classifiers of the structure in the model in the same level with-

Structure Browser

out consideration of their owner. When you select the Display in Plain List option, the classifiers will be sorted
by their name.

A Struckure | & Structure
Structure e Struckure *
BEARTEBY Bl& e v
B Data S I e] [Bodysubsyskemn] A
E-EHSUyMadel L | B] [BrakeSubsystem)
B Explanations ||| b E] [ChassisSubsyster]
E Ha analysis | | B E] [ElectricMakorizener atar]
E-F HsUY Behavior El-E2 [HybridsUy]
E-E7 HSUY Requirements |l | i = [IrkeriorSubsystem]
El-F HSUY Structare | | - E [TnkernalCombustionEngineg]
Bl-E7 HILY Inkerfaces] || B] [LightingSubsystem]
- #ccelerator E-E [PowerSubsystemn]
F-E autormotivebomain ||| || B B [Transmission]
- BatkeryPack.] || B 3 AccelerationEquation
- Bodysubsystern] || B] Acceleratar
= BrakePedal || || & E3 AeroDragEquation
B & Erakesubsystem E-EF Aukomaotivelannain
~EHoam s | B EE Baggage
F-EH chassissubsystern ||| || B] Balanceeight
- Differential] || B] BatteryPack
- ElecPower EH-E Elock
E-E ElectricalPowerContraller s || [] BodySubsystem M

Figure 240 -- Structure Browser Normal Display Figure 241 -- Structure Browser Plain List Display

9.3.2 Show Inherited Structure

The Structure browser can show the properties that are inherited from the generalization classifier.

bdd [Model] Data [[]J
==hlock==
Block
valuwes
SN D
==hlock== ==hlock== ==hlack== ==hlock==
[ChassisSubsystem] [BodySubsystem] [BrakeSubsystem] [ElectricMotorGenerator]

Figure 242 -- Four Specialization Classifiers of Blocks

Structure Browser

< Struckure

Skruckure X

o R-Y

E-E [Bodysubsystemn] -
f [0 45M: ID

E-E= [Brakesubsystem]

f 0 45M: ID

E-E [Chassissubsystenn]

f 0 45M: ID

E-E [ElectricMotorGenerator]

L[+generatarEfficiency : Real
f O miokorEfficiency : Real

f O 45M: ID

B [Hyvbridaiy]

--I__r;l -| 1 [LightingSubsystem] = |
--I__r;l -b i [BodySubsystem] = b
--I__r;l -p + [Powersubsystemn] = p
F-TA -r : [Chassishawatem] = -

Figure 243 -- Inherited Structures of Blocks

9.3.3 Show Full Type in Browser

You can also see the full type of the classifiers that type the properties of the classifier in the Structure browser.

< B Skructure

Skructure s

EREE=E

E-E [BodySubsystem] -
E1-= [ErakeSubsystem]

- [ChassisSubsystem]

- = [ElectricMatorGenerator]

B2 [HybridsUy]

B} CA - HSUYModel:: Tesk:: [LightingSubswster
B} CA -b : H3UWModel:: Test: | [BodySubswystemn]
B} CH -p : H3UWModel:: Test: . [PowerSubsystenr
B} CH -c : HSUWModel:: Tesk: [ChassisSubsysker
b
b

i1 CH i ¢ HSUWModel:: Test::[InteriorSubsysten

i1 CH -bk : HSWModel:: Test: :[BrakeSubsysten

- +mpg : SvsML Profile: :Blocks::Real

-l +pavloadCapacity : SvsML Profile::Elocks

- +wehicleDryWeight 1 SvsML Profile: :Block

-l +position : SvsML Profile: :Blocks::Real
-1 +%IM @ Skring

E-E [Interiorsubsy skemn]

E-E [InternalCombustionEngine] b

< >

Figure 244 -- Structure Browser Displaying Full Type of Classifiers
9.3.4 Show Applied Stereotypes in Browser

Use the Show Applied Stereotypes in Browser option to show (or hide) the applied stereotypes of the elements
in the browser.

Structure Browser

9.3.5 Show Auxiliary Resources

Use the Show Auxiliary Resources option to show or hide auxiliary resources, e.g., SysML Profile, in the Struc-
ture browser.

9.3.6 Filter

Use the Filter option to customize the display of elements in the Structure browser. Mark the check box in front
of the element you would like to display. Clear the checkbox to hide the element.

E Items Filter

General |

[Lisk] [Inheritance] [Structural]

B- | [Element 5
- [] . Abstraction 0
-] D AbstractReferenceProperty

- [] 21 Accept Call Action

- [] 2] Accept Event Action

|:| [] Action Execution Specification

-] IE[Action Input RFin

-] 3 Activity

- [] @ Activity Final Mode

- [] & Activity Parameter hNode

- [] Al Activity Partitian

-] % Actar

-] ﬁ] Actuakar

- [] & #dd Structural Feature Yalue Action

(press SHIFT and click bo select recursively)

[Select &l] [Clear all]

Figure 245 -- Items Filter Dialog for Customizing Elements Display in Structure Browser

9.4 Additional Structure Browser Menus

The Structure browser provides two menus to perform some additional actions.

(9.4.1) Go To > Type <name> in Structure Tree Menu
(9.4.2) Go To > Owner Menu

To open the Go To menu in the Structure browser:

1. Right-click a property in the Structure browser.
2. Click Go To and select the option you want from the submenu.

191 Copyright © 2006-2011 No Magic, Inc.

Structure Browser

9.4.1 Go To > Type <name> in Structure Tree Menu

Click Go To > Type <name> in Structure Tree to navigate, in the Structure browser, to the classifier node of
the classifier that types the property of the selected property node. The result of the selection is the classifier
node in the Structure tree. For example, after selecting Type WheelHubAssembly in Structure Tree in Fig-
ure 246, the WheelHubAssembly block will then be selected in the Structure browser.

< Shructure
Skruckure *
B RY
B2 HybridsLy A
BB -« : ChassisSubsystem
B3
B CE -p i Powersubs Mew Element 4
- [H -b 1 Body3ubsyd Mew Relation]
B -bk : BrakeSubs
-8 -i i Inkeriorsubs
-8 -l : LightingSubs| Specification Enter
- [+mpg : Real
Go To] i
[0 +payloadCapac | Cwned Diagrams »
- [+vehicleDryiiie Refactor L Usage in Diagrams 3
[+position : Real Select in Containment Tree Alt+E B Type wheelHubassembly
- [0 +YIN @ String
Related Elements] i
----- [ICEFuelFitting Al G
----- E Inflationvalve Stereotype b |Q Type WheelHubAssembly in Structure Tree
----- E Interiorsubsystem
R Fz Cnner
BB InternalCombustion| Ename
-----] LightingSubsystem | (9 Copy Chri+C
B-EH LugBoltJoint Copy as URL
[}
d
Find...
Generate Report...]

Figure 246 -- Go To > Type Shortcut Menu

9.4.2 Go To > Owner Menu

Click Go To > Owner (Figure 247) to navigate to the classifier node of the classifier that is the owner of the
property of the selected property node. The result of the selection is the classifier node in the Structure tree.

Structure Browser

B Shructure
Skruckure | =
=B Y
B+ Hybridsly v
BB -t : ChassisSubsystam
Egmal YheelHubAsser| Mew Element »
[CH -p : PowerSubsystem ati
- -b i BodySubsystem LlewBeation D
[[-bk : BrakeSubsystem
-8 - 1 InkeriorSubsystem) N -
- H -l 1 LightingSubsystem| pecirication nter
- +mpq : Real Go To 4 | Coyned Diagrams
3 ity || oo
-1 +position : Real Select in Containment Tree Alt+EB Type WheelHubAssembly
-0 +%IN & String Related Elements » Hypetlinks
- =] TCEFuelFittin
% InFIationValvg Stereatype » | 2 Type wheelHubassembly in Structure Tree
- InteriorSubsystem Rename Fz | Owiner
B-E InternalCormbustionEnging
.. LightingSubsystem Gl Copy EHE
E1-E LugBaltJoint Copy as URL
&
-
W
Find...
Generate Report, .]

Figure 247 -- Go To > Owner Shortcut Menu

9.5 Additional Diagram Menu

9.5.1 Select in Structure Tree Menu

Use the Select in Structure Tree menu on the part shortcut menu (Figure 248), on Internal Block, Parametric,
or Composite Structure diagram, to select, in the Structure browser, the structure node corresponding to the
selected part symbol.

For instance, in Figure 248, the context of the IBD is MEP. When using the Select in Structure Tree menu with
the diameter : m (car.engine.cylinderLiner.diameter : m) part, the corresponding diameter : m node (under
car : Car > engine : Engine > cylinderLiner : Cylinder Liner of the MEP classifier) will then be selected in the
Structure browser (Figure 249).

Structure Browser

ibd [System Cortest] MEP{ [Egj MEP]J :

==constraint==

: | | | : Cross Section Equation
== alueType== 0 | VAR {ares = 0.25* P dismeter=2)t | °
car.engine.cylinderLiner.diameter : m
- Specification Enter
' Symbolis) Properties. . alt+Enter
......... ,,+ ca To N
Refactor r
Select in Containment Tree Alt+E
==valueTypess o Select in Skructure Tree
car.engine.crankShaft.strokeLength : m Related Elements b
"""""""""" Stereaktype]
......... e Autosize
2 alueTypes== 0 Edit Compartment b
""""""" | car.engine.torque : Hm Show Stereotypes ¥
......... F B ==ValueType== | Show Constraints
Pmep : Pa Show Owner 3
.................................... wWrap Wards
Show Classifier

Figure 248 -- Select in Structure Tree Menu

o % Struckure

E}--I?rj -car :Car

Skruckture >

=B Y

-2 MEP A
¢ [-Pmep : Pa

Ell__t| +engine : Engine
BB +cylinderLiner
‘ diameter : m

» Cylinder Liner

£

=ff=R==]=N=F==F=}-]-

+rylinderHead @ Cvlinder Head
+intakebtalves : Intake Yalve [§]
+exhaustialyes | Exhaust Valve [
+pistons | Piston [4]
+skarterMator @ Starker Mokar
+injectiontozzles : Injection Mozzl
+distributaor ¢ Distribukor
+sparkPlugs : Spark Plug [4]
+camshaft : Cam Shaft
+crankshaft ; Crank Shaft
+dynamo : Dynamo VS

Figure 249 -- Select in Structure Tree Menu - Example of Result

Dependency Matrix

Dependency Matrix enables you to visualize and represent your particular model in a tabular form, depending
on the scopes and dependency criteria you have selected.

e Scope: there are two types of scope: (i) row scope and (ii) column scope. You can select
diagrams, UML elements, and/or SysML elements as a scope.

e Dependency criteria: include UML relationships, SysML relationships, semantic dependencies
(dependency through property), and relationships through tags.

Cells in a dependency matrix show where the elements in the selected scope are associated with or related to
one another. A dependency matrix allows you to visualize the many-to-many traceability of elements from dif-
ferent diagrams, particularly for elements interconnected in a large system.

A dependency matrix helps you:
e Quickly visualize dependency criteria.

e Compactly visualize the relationships of a large system, which cannot be easily represented by
a diagram on a single sheet of paper because of the diagram complexity.

e Visualize domain-specific relationships through your own matrix templates for such domains.

e Understand relationships from a particular scope by filtering the unimportant kinds of model
elements.

e Display relationships that cannot be represented in diagrams, such as representations (classes
by lifeline), behavior representations in other diagrams, operation representations by Call
Behavior Actions, etc.

10.1 Opening Dependency Matrix

A matrix element in a model is similar to a diagram element. When created, the new matrix will appear in the
Browser as a model element. To open the matrix pane, double-click the matrix name in the Browser. All func-
tions that can be performed with diagrams can also be performed with matrices.

You can open a Dependency matrix from any of the following:
e Diagrams main menu (Figure 250)
e Analyze main menu (Figure 251)

e Package shortcut menu in the browser (Figure 252)
e Custom Diagrams toolbar (Figure 253)

Dependency Matrix

Class Diagrams. .. Chel+1
Communication Diagrams. .. Ctrl+3
@ Sequence Diagrams. .. Chrl+4
Skate Machine Diagrams... Chrl+5
@ Pratacal Skate Machine Diagrams. .. Chrl+6
A% Implementation Diagrams. .. Chrl+3
!=:j| Composike Structure Diagrams. .. Crl+9
Efj Interaction Cwverview Diagrams., .. Chrl+-0
| Custom Diagrams 4 | Free Form Diagrams. ..
SysML Diagrams] [ﬁl Tirne Diagrams. ..
Cuskomize. .. |D Dependency Matrixes. ..
Diagram Wizards » ||E0 Content Diagrams... Chr+H
[Previous Diagram Alt-+Left

Figure 250 -- Opening Dependency Matrix from Diagrams Main Menu

Analyze

Model visualizer
Mekrics »
Compare Projects
| Dependency Matrix J | [T Create Blank Matrix
Yalidation P | 5] Matrix Templates
-

Figure 251 -- Opening Dependency Matrix from the Analyze Main Menu

= B

Mew Element »
| Mew Diagram b | SysML Diagrarns 3
Mew Relation * lass Diagram
Camrmunication Diagram
Specification Enter @ Sequence Diagram
Use Case Mumbering. .. ﬁ.:'j Skate Machine Diagram
Go To » @ Protocol Skate Machine Diagram
Related Elements » Inkeraction Owerview Diagram
Tools » | Custom Diagrams » | Free Form Diagram
Stereatype 3 M |D Dependency Matrix
Renanne F2 Conkent Diagram

Figure 252 -- Opening Dependency Matrix from the Package Shortcut Menu in the Browser

Dependency Matrix

B ErEl

| Dependency hdatrix... |

Figure 253 -- Dependency Matrix Button on the Custom Diagram Toolbar

10.2 Working with Dependency Matrix Templates

/rj Dependency Matrix l 1 B
Row Element Type: [] ColumnElement Type: |]
Row Scope: Z] Column Scope: [I]
Row Added/Removed Element: [] Column AddedRemoved Element: : il
Dependency Criteria; :] [] Make column same as row

EEEE E NG

Figure 254 -- Dependency Matrix View

Matrix properties and filter configurations are stored in MagicDraw. The matrix configuration is called a matrix
template. It is used for storing the configuration of a dependency matrix (filters and matrix properties) indepen-
dently of a project. The configuration stored in a matrix template can then be used later or shared with your col-
leagues.

NOTE e To create a new matrix template, it is easier for you to start with a pre-defined
template.

e The matrix template can be imported and exported as a file.

You can open a built-in matrix template by using either (i) the Analyze menu in the main menu, or (ii) the Load
Matrix Template button in a dependency matrix view.

(i) To open a built-in matrix using the Analyze menu on the main menu:

1. Click Analyze > Dependency Matrix > Matrix Templates on the main menu. The Depen-
dency Matrix Templates dialog will open.

2. Select a built-in matrix template, and then click OK.

(ii) To open a built-in matrix using the Load Matrix Template button in a dependency matrix view:

1. You must have a dependency matrix open.

2. Click the Load Matrix Template button in the dependency matrix view. The Load Matrix
Template dialog will open.

3. Select a built-in matrix template, and then click OK.
SysML Plugin provides four different dependency matrix templates:

e SysML Allocation Matrix template

This template is used for creating a matrix to show ‘Allocation’ dependencies between clients in
rows and suppliers in columns. Allocations can be used early in a design as precursors to more

Dependency Matrix

detailed rigorous specifications and implementations. Allocation dependencies provide effective
means for navigating your model by establishing cross relationships and ensuring the various
parts of your model are properly integrated.

e SysML Refine_Requirement Matrix template

This template is used for creating a matrix to show ‘Refine’ dependencies describing how a
model element or a set of elements refine a requirement. For example, a use case or activity
diagram may be used to refine a text-based functional requirement. Alternatively, it may be
used to show how a text-based requirement refines a model element. In this case, some elabo-
rated text could be used to refine a less fine-grained model element.

e SysML Satisfy_Requirement Matrix template

This template is used for creating a matrix to show ‘Satisfy’ dependencies between require-
ments and model elements that fulfill the requirements. Each arrow direction points from the
satisfying (client) model element to the satisfied (supplier) requirement.

e SysML Verify_Requirement Matrix template

This template is used for creating a matrix to show ‘Verify’ dependencies between requirements
and named elements that can determine whether the systems fulfill the requirements. Each
arrow direction points from the (client) named element to the (supplier) requirement.

For more information on the Dependency Matrix feature, see the Model Analysis in the ‘Dependency Matrix’
section in the MagicDraw User Manual.

10.3 SysML Editable Matrices

Starting from version 16.6 of SysML Plugin, three of SysML matrix templates are editable. Beside display of
dependencies between elements, you can add / delete dependency(ies) directly in the editable matrices.There-
fore, SysML provides three different matrices: SysML Allocation Matrix, SysML Satisfy Requirement Matrix
and SysML Verify_Requirement Matrix.

10.3.1 SysML Allocation Matrix

The SysML Allocation Matrix consists of:
e Row: a named element that can be the client element of the Allocate dependency.
e Column: a named element that can be the supplier element of the Allocate dependency.

Dependency Matrix

|A] Allocation Matrix 4 b &
Row Element Type: ificationAction Z] Column Element Type: ificationAction Z]
Row Scope: 15UV Behavior | [| Column Scope: 150V Behavior | [ws |
Row Added/Removed Element: [] Column Added/Removed Element: [
ERED BEE
|y |o |5)= |5
sle|u|E[3]|5]|E]5
sl =s|lB2|lvwlal|l2|=
JHHHEHEE
SR A
Dl R|E|E|T| PR 2
i I i
E- £ HaIUY Behavior i 1|11
B3 Accelerated transModeCmd 5 1 13 1
B3 ProvidePower(transMa, .., 1 13 1
D al:ProportionPower A
CJ a2 :ProvideGasPower A
D a3:ControlElectricPa. ., A
L. a%:ProvideElectricPo. . Ve
El-C7 HSIUW Skruckure 1 1 (1
B-E Powersubsystem i1 1 1
.. [H -emg : H3UYMadel::H5U. .. i
.. [H -epe : H3UYModel::HSLU. . Ve
.. [H -ice : HSUWModsl: :HSLW. ., v
.. [-peu : HSUWMadel:HSU. . | o7

Figure 255 -- SysML Allocation Matrix

10.3.2 SysML Satisfy_Requirement Matrix

SysML Satisfy Requirement Matrix consists of:
e Row: a named element that can be the client element of the Satisfy dependency.
e Column: a Requirement Element that can be the supplier element of the Satisfy dependency.

199 Copyright © 2006-2011 No Magic, Inc.

Dependency Matrix

|8 satisfy Matrix x 4 b &

-tion,Usage, Us [I] Column Element Type: Requirement [I]

Row Element Type:

 UseCases,Ma Z] Column Scope: UseCases,MNa Z]
Z] Column Added/Removed Element: Z]

Row Scope:

Row Added/Removed Element:

BEEE NS

SlE2lalalglelclnl2lsl=l8lolcl=2]=
n|B|E|S|E|S|S|2Is|I2|ElR|SIS(218|2
Slgla|lslSlgz|le|lels|Z|E|lL|S|w|2|5]|
- =3 = | E o L Bl =T
Sl |ls|2|E|lE|E| 8|l 28|88 5 |0
lplsls|lc|Y|El|lEln|lz|¥|lz|l5|5|2)8)|2
% m =] H ":n — 8-. .E H E =] = g aE' o =]
By [E S5 | T |@|cC = & Uﬂ;: o E =3
H .'_: I:\! H H "_: H o ﬂ: .'_: I:\! I:'j- H H ﬂ: H I:\!
= =+ -+ = = [w = [] []] [] [a¥] = = =) = o
[T T T T T
.. ICEFuelFitting [
.. InteriorSubsystem
& InternalCombustionEngine
.. Lighting5ubsystem =
- = Power

- PowerControlUnit
- Powersubsyskern
- Torque

. = Transmission
E-E InkeriorSubsystem

Figure 256 -- SysML Satisfy Requirement Matrix

10.3.3 SysML Verify_Requirement Matrix

The SysML Verify_Requirement matrix consists of:
e Row: Named element which can be the client element of Verify dependency.

e Column: Requirement Element which can be the supplier element of Verify dependency.

200 Copyright © 2006-2011 No Magic, Inc.

Dependency Matrix

@"Jerifv Matrix = 1 B
Row Element Type: ificationAction Z] Column Element Type: Requirement E]
Row Scope: 15UV Behavior | [_w. | Column Scope: 150V Behavior | [|
Fow Added/Removed Element: :] Column Added/Removed Element: :]
El H = & &5

el olaldalalclZ2]2lsalellldls]2]2
2Bl E|8 8|5 |w|Tl8|l2|518: 2282
— » | 3] = | 4 =2 5
z S| 5|E|E|E|E|g|El=|E|R|B|E2[2]|%
sl BlY || E|E|2|E|ls|S|d|2|s|z|E|E|E
= [if] A I . o =1 [ra [T = D cC
[~ = i o 1 = = [ey 3 | = w [=1 =]
SN o R0 Bl 0 D e B S A e R e e
z + | =+ | = z o | = ed foed el foed || s z = | = o
OO|OOOEO@EmOOm MO OO ||| CE
=== .

Figure B, 13 Acceleration, .. |

@ Figure B.14 Requiremen. ..

ﬁ H3LY Requirement Table

.7 HEIV Specification

.. H3IUY Specification

.8 Max Acceleration e

... B Maxbcceleration A

.. (A d.4 Power

.. (A " " PowerSourceManange, ..

.. d.Z Range

.. [d.1 Reqgenerativebraking

- B3 Maxhcceleration

Figure 257 -- SysML Verify_Requirement Matrix

10.3.4 Creating SysML Editable Matrices

You can create SysML matrices by using either the (i) main toolbar, (i) main menu, or (iii) Containment Tree.

(i) To create a SysML Editable Matrix using the main toolbar:

1. Click the icon of the editable matrix that you want to create on the main toobar (Figure 258):

° @ SysML Allocation Matrix

° @ SysML Satisfy_Requirement Matrix

° @ SysML Verify Requirement Matrix
The Create Diagram dialog will open (Figure 259).

Hmsivig

Figure 258 -- SysML Matrices Toolbar

201 Copyright © 2006-2011 No Magic, Inc.

Dependency Matrix

E Create Diagram

Create a new SysML Satisfy_Requirement Matrix

Type diagram name and select package in which a new
diagram will be created,

T

Type SysML Satisfy_Requirement Matrix name:

Lrited] |
Select owner for diagram:

£ HaIWModel

BB MO Customization For SysML [MD_customization_for_SysML.
E-£ ModelingDamain

BB QU Library [MD_customization_Far_SysML.mdzip]

BB UML Skandard Profile [UML_Standard_Profile. xml]
E
E
E

3-[eg Matrix Templates Profile [Matrix_Templates_Profile. xmi]
i SysML [SysML Profile.mdzip]

&g UML Profile for Schedulabilty, Performance and Time Specifica
- # Bssocation[H3UYModel: :Department OF Maokor Yehicle - HSUY
w1 Bgsodiation[HSUYModel: :Driver - HSLYMadel HIUY UseCase:
o # Bssodiation[HaUYModel: :Driver - H3YMadel: :HILY UseCase:
w1 Bgsodiation[HSUYModel: :Driver - HSLYMadel HIUY UseCase:
w1 Bgsodiation[HSUYModel: :Driver - HSLYMadel HIUY UseCase:

- g Association[HIUYModel: (HybridSUY - b HSUWModel: : HIY Sk
gt Bssociation[H3UYModel: :HybridSUy - bleHSUYMadel: :HS LY St
gt Bssociation[HaUYModel HybridSUy - ciHSUYMadel: HSY Stru

w
v A Aeenrisbicn TS WA Al Hubeid S 2 ST R Al S W Sk
4| i | [#]

[Create Owner l Clone

Figure 259 -- Create Diagram Dialog

2. Type the name of the editable matrix you want to create, and select its owner from the element
tree.

3. Click OK.

(i) To create a SysML Edtiable Matrix using the main menu:

1. Click Diagram > SysML Matrices on the main menu (Figure 260).
2. Select a SysML Edtiable Matrix that you want to create from the submenu (Figure 260).

202 Copyright © 2006-2011 No Magic, Inc.

Dependency Matrix

203

Diagrams | Options Tools Analyze Teamwork Window Help

A [[

""r E

L

Class Diagrarns...

Communication Diagrarns...
Protocol State Machine Diagrams...
Implementation Diagrams...
Cormposite Structure Diagrams...
Interaction Overview Diagrams...
Customn Diagrams

SysML Diagrams

SysML Matrices

Customize...

Diagram Wizards

Load All Diagrams

Ctrl+1
Ctrl+3
Ctrl+6
Ctrl+8
Ctrl+9
Ctrl+0

P || [A] SysML Allocation Matrices...

* @ SysML Verify_Regquirernent Matrices..,

[E 8 e B E MR
HEE EEERERE

b4 B8 T IS i
I |

@ SysML Satisfy_Requirement Matrices...

Figure 260 -- SysML Matrices Menu

3. A dialog of the selected matrix will open. For example, select SysML Allocation Matrices...,
the SysML Allocation Matrix dialog will then open (Figure 261). Click the Add button in the

dialog.

[sysML Allocation Matrices

SysML Allocation Matrices

Mame

F¥ Allocation Matrix

Create a new SysML Allocation Matrix, Open a diagram by choosing it from the list
of SysML Allocation Matrices available within a project,

mm H5UvMaodel

T

Owner

[Edit] [Add] [Remove] [Cpen]

Figure 261 -- SysML Allocation Matrix Dialog

Copyright © 2006-2011 No Magic, Inc.

Dependency Matrix

4. The Create Diagram dialog will open (Figure 259). Type the name of the editable matrix you
want to create, and select its owner from the element tree.

5. Click OK.

(iii) To create a SysML Editable Matrix using the Containment Tree:

1. Right-click the element, which will be the owner of the SysML Editable Matrix, in the Contain-
ment Tree. The element shortcut menu will then display (Figure 262).

BeC.[R 5. &L @D == [&ds. |Z untitled1 x
%ﬁizmgﬁv . SR R L ih-Bubklm TS It A
o | e =] Common Pmi B H =
EEIE:_ Mew Element 4 il
EE Mew Diagram 3 SysML Diagrams »
- Mew Relation D SysML Matrices P | [&] SysML Allocation Matrix
SE Class Diagram @ SysML Satisfy_Requirement Matrix
B Specification Enter B Use Case Diagram [V SysML Verify_Requirement Matrix
B[] Use Case Numbering... Communication Diagram
g Requirement ID Numbering... @ Sequence Diagram
Go o 9 State Machine Diagram
Select in Structure Tree @ Protocol State Machine Diagram
Related Elements v |[E] Activity Diagram

Figure 262 -- SysML Matrices Menu in Browser

2. In the shortcut menu, select New Diagram > SysML Matrices, and select a SysML Editable
Matrix that you want to create on the submenu.

3. Type the name of the matrix in the Containment Tree.
4. Press Enter to finish.

10.3.5 Building Matrices

The matrices you have created in Section 10.3.4 (Creating SysML Editable Matrices) are empty matrices. To
build a complete matrix, you must also provide the row and column scopes of the matrix. All valid elements in
the selected scope will be used to build the matrix.

To select the row and column scopes of a matrix:

1. Click the ... button next to the Row Scope in the matrix pane (Figure 263). The Scope dialog
will open (Figure 264).

[A] AlloMatrix1 x 4 b B
Row Element Type: Transition, Actor, Z] Column Element Type: Transition, Actor, Z]
Row Scope: Z] Column Scope: Z]
Row Added/Removed Element: Column Added/Removed Element:

HEEEE N

Figure 263 -- Scope Button

Dependency Matrix

E Scope

Model

X

El- & Data
B [#] B HSUvMadel
--] Bg MD Customization For SyshL
-- [] B3 MadelingDomain
-- [Eg SwsML Profile
-] Bg UL standard Profile

[press SHIFT and click to select individually)

[ok [Cancel] [Help

Figure 264 -- Scope Dialog

2. Select the check box(es) in front of the packages, models, or profiles that will be the row scope.

3. Click OK to close the Scope dialog.

4. Click the ... button next to the Column Scope in the matrix pane (Figure 263). The Scope dia-
log will open (Figure 264).

5. Select the check box(es) in front of the packages, models, or profiles that will be the column
scope.

6. Click OK to close the Scope dialog.

7. Click the Rebuild button.

10.3.6 Editing Matrix

You can create or remove dependencies directly in an editable matrix. Double-click on an empty rectangle in
the matrix to create a new dependency, or double-click an existing dependency in the matrix to remove it.

(i) Creating New Dependencies
You can create a corresponding dependency of each matrix directly in the matrix by double-clicking on the
intersection of the row and column elements. The row and column elements will become the client and supplier

elements of the created dependency respectively.

Another way to create a dependency is by right-clicking on the intersection of the row and column elements.
Then, select New Relation > Outgoing, and select the dependency you would like to create (Figure 265).

Dependency Matrix

HHHEEEE
glels|s|2|2|E
Clmlo|lo|l= |z | =
s12|Y|E |33
2|2 |E|E[E|9 |
S|elslelo| =
=T =T A =T = B
AR KA
o s I s s o
El-E HaIW Behavior i 1 i 1 1
El.&3 Acceleratef transtodeCmd 5 | 1 1 1 1 1
El-&3 ProvidePower{ transMa... | 1 1 1 1 1
... al:ProportionPower A A
D az:ProvideGasPower | o Mew Relation kA Qutgoing * || 2 Allocate
i (O a3:ControlElectricPa. . Delete Relation »
L. ad:ProvideElectricPo. .. 5 4 Lt
E1-F HSUY Struckure 1 FpEndEncy -
E-E PowerSubsystem i i1
CE -emg : HSUYMadel: :HSLU. .. e
A -epc : H3VMadel: HSU. . o
. [-pru : HSUYMadel:HIU. .. |

Figure 265 -- Editable Matrix Context Menu
(ii) Removing Existing Dependencies

You can also remove an existing dependency of each matrix by double-clicking on that particular dependency
that you want to remove.

Another way to remove a dependency is by right-clicking on the intersection of the row and column elements.
Then, select Delete Relation, and select the dependency you would like to delete (Figure 265).

(iii) Dependency List

You can view a list of dependencies associated with a cell in an editable matrix by right-clicking on the cell, and
then select Dependency List from the context menu (Figure 265). The Dependency List dialog will then dis-

play (Figure 266).

Dependency List

= H £ Z
&8 BC B

Dependency Mame Row Element Mame — Direction Column Element ...
=
& Allocate[HsU, .. © al:ProparkionP, .. —_— 1 az:ProvideGas, ..

Figure 266 -- Dependency List Dialog

206 Copyright © 2006-2011 No Magic, Inc.

Teamwork

11.1 Working with Teamwork Project

MagicDraw Teamwork Server allows you to work simultaneously on the same project (a teamwork project)
using multiple workstations. Teamwork Server also provides you with a user access control mechanism,
together with versioning ability.

Once a teamwork project is stored on Teamwork Server, it can be shared with multiple MagicDraw applications
at the same time.

NOTE e To use Teamwork Server with MagicDraw SysML, the Teamwork Server version must
be the same as the MagicDraw version.

e To be able to completely work with a teamwork project, you must obtain a permission;
either System-level 'Edit model' permission, or Project-level 'Edit model' permission
for that project.

To work with a Teamwork project:

1. Select Login on the Teamwork main menu to log in to Teamwork Server (Figure 267).

Tearmmark

—

B

T

s+
+ ==

&

| Lagin Chrl-Shift-+L

Figure 267 -- TeamWork Main Menu

2. Enter your Username, Password, and the Teamwork Server name (IPaddress:portNumber or
just IPaddress if the port number is 1100 (default)) in the Login dialog.

3. Create or open a Teamwork project.
4. Lock for edit elements before editing or deleting them.

5. Commit the changed project. Before committing a project, select the locked elements to com-
mit the change. The elements that are committed will be automatically unlocked.

Report Wizard and Template

For more information on Teamwork Server, see the MagicDraw TeamWork User Guide.

This section contains only introductory information about the Report Wizard and SysML report templates. For
detailed information on how to use the Report Wizard engine, see the MagicDraw Report Wizard user guide.

12.1 Report Wizard

To launch Report Wizard:

1. Click Tools > Report Wizard... on the main menu (Figure 268). The Report Wizard dialog will
open (Figure 269).

Tools |

Hyperlinks

Project Merge

| Report Wizard. ..

Figure 268 -- Report Wizard Menu

2. The following nine built-in SysML report templates will appear in the Report Wizard dialog (Fig-
ure 269):

e Requirement Diagram

e Requirement Table (Type A)

e Requirement Table (Type B)

e Requirement Report

e Coverage Analysis

e Requirement Dependencies Report
e Requirements Table Diagram Report
e Allocation Table (Type A)

e Allocation Table (Type B)

e Allocation Table (Type C)

Report Wizard and Template

E Report Wizard

Select a report template [J %
Select a report template from which you would like to generate a report. In this page, you can
also create new templates, or edit / delete f open / done [import / export existing templates.

~ Select Template

--1:] Other Documents b]
Bl SysML

- [E] Allocation Table {Type &)
- [E] Allocation Table {Type B)

- [E] Allocation Table {Type C) B Ope
- &) Coverage Analysis =
- [E] Reguirement Dependencies Report ;

Requirement Diagram
- B Requirement Repart
- [E] Reguirement Table (Type &)

- [E] Reguirement Table (Type B)
- |&| Requirements Table Diagram Report

EEI--{jTraceabiIity t] —
(Description) S
HE
< Bac ext = senerate Cancel] [Help]

Figure 269 -- Report Wizard Dialog - Template Selection

To create a report using a SysML report template:

1. Select a report template and click Next in the Report Wizard dialog (Figure 269). The Select
Report Data pane will open. You can then select a pre-defined report data for the selected tem-
plate (default = Built-in) in Figure 270.

209 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

E Report Wizard

Select a report data [J 3
Select a report data (a collection of repart variables, e.qg., Authar, Publisher, etc.) which you E’E’E
would like to be induded in the generated report. A built-in repart data is provided for every b
predefined template. ==

— Select Report Data

[Mew
M Built-in

B Edit
fiiil Delete
Clone

Variahle

140

Pre-defined report data for this template.

< Back]i Next > | senerate Cancel][Help

Figure 270 -- Report Wizard Dialog - Pre-defined Report Data Selection

2. You can modify the introductory information of a report, i.e. Variables (formerly called “User
Defined Fields”), by clicking the Variable button on the Select Report Data pane (Figure 270).
The Variables dialog will then display (Figure 271). You can then add/modify the variableof the
report to be generated, such as author, company name, company address, report purpose,
report scope, etc. This information will appear in the report generated.

210 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

Manage report variables [J Iy
Create, maodify, delete variables or set values for them.

= ”
Author .

<Author name =

CompanyMame Mo Magic Inc. | “
CompanyAddress 7304 Alma Drive, Suite 600 Plano, TX 7| |
Purpose «This document provides requirements| |
Scope <Provide a short description of the sys
Owverview <Describe what the document containg |
Footer Confidential
DocumentTite Requirement Report

Revisions
Includelcon true

{Descriﬁlﬁnn}

Figure 271 -- Report Wizard Dialog - Variable

3. Click OK to return to the Select Report Data pane (Figure 270). In the Select Report Data
pane, click Next. The Select Element Scope pane will then display (Figure 272).

211 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

Select element scope [J Y
Select one or more elements to be used as the scope of the generated report. i

Select Element Scope
all data

B A

B} HsUyMadel

----- &1 Explanations [Add]

------ £ H3UW Analysis
- HSUW Behavior [Add Al]
i HSUY Instance Yalues
It| H3LW Requirements [Add Recursively]
E-E HSUY Structure
E1-F HUY UseCases
E1-F HILWY Views

----- £ ModelingTips

E-E7 Sterectypes

------ £ SysML 1.1 Specification b« |

| i | [
Generate Recursively
[] 5how Auxiliary Resources Show Only Package Element

[< Back]L Mext =] Cancel][Help

Figure 272 -- Report Wizard Dialog - Select Element Scope

4. In the Select Element Scope pane:
e Use the Add button in Figure 272 to add an element selected in the element tree to
the Selected objects pane.

e Use the Add All button in Figure 272 to add all elements directly owned by the
element selected in the element tree to the Selected objects pane.

e Use the Add Recursively button in Figure 272 to add all elements listed under the
element selected in the element tree to the Selected objects pane.

e Use the Remove button in Figure 272 to remove the selected element from the
Selected objects pane.

e Use the Remove All button in Figure 272 to remove all selected elements from the
Selected objects pane.

NOTE To add all elements under a package to the report, select the package in the element
tree, and then click Add Recursively (Figure 272).

5. After the scope of the report is defined, click Next to proceed to the Output Options pane (Fig-
ure 273).

212 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

Report Wizard

Output options
This page allows you to configure repart files, e.qg. to select the report files output location
and image format, etc, Click Generate button to start generating the report,

Qutput Options

Report file:

C:\Document and Settingsiusername My Documents MM-RequirementReport.rif
Report image format:

Joint Photographic Experts Group (*.jpg)

Auto image size:

Fitimage to paper {large only)

Display empty value as Publish to server
{:} Empty text Select server ;
(3 Custom text: |NA] No Upload

Display in viewer after generating report

Generate][Cancel

Figure 273 -- Report Wizard Dialog - Output Options

6. Specify the report file name, report file format, and image file format (Figure 273). It is recom-

mended to use RTF as the report file format.

7. Click Generate to create the report (Figure 273). Your report will then be generated. Once gen-

erated, it will automatically open in the default document editor.

See the MagicDraw Report Wizard user guide for more information on this Report Wizard dialog.

12.2 Requirement Report Templates

Use a Requirement Report template to generate a Requirement report that provides a summary of the require-
ment modeling in a SysML project. You can generate a Requirement report on the whole project or on some
specific elements selected from the Report Wizard dialog. There are six built-in Requirement Report tem-

plates:

213

(12.2.1) Requirement Diagram

(12.2.2) Requirement Table (Type A)

(12.2.3) Requirement Table (Type B)

(12.2.4) Requirement Report

(12.2.5) Coverage Analysis

(12.2.6) Requirement Dependencies Report
(12.2.7) Requirements Table Diagram Report

Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

12.2.1 Requirement Diagram

Use this report template to generate basic reports for SysML requirements. Requirement Diagram reports pro-
vide Requirement diagrams and tables describing the elements in the diagrams (Figure 274).

Requirements
Figure 16.3 - Requirements Derivation: Safety Test

Description

[naone)
req | 'Ij*ruu 16 3 - Angurendtis Derfvaliony Sately Tast]
g T =
ASTM BAEET -0 Paworniond Bricticn "'-1'1“-:“-
Id==A JT4241™ ld==54.21% Fytat il S
Tl = =Thisg dirit Tox = =The road
Frindhad L]
iR the surface produces
T A e &
of peakbenbing & — — = —|peakichon
coeficient 1 wirrenfiacg rmaify gk
o pavad suMates (PP of 0.8 when
ging maasunad useg
& slandasd an American e
resereree bisl Sociely for)
b {ERTT) a% Tagbng and R F
FEILER Materiats T
in Gpecification ASTH) E1136
IE11.36 thal slanded g
FEDIRSENES CUrTEn refarancs esd ioe,
[EESTT in @cordance with
pEgangar car ASTM Migthod E
rmdial Bes ™ 1337=80,=
T T T [ecreqarmertss e T
Tewi sl Wehbile Coreiitions
1 wedertveRiadgan proceda s d=—E7 41"
ondiionm &
=974
Teat=""{a} &T. =
B5 "G (148 "F),
= 100G (212 °F)
{0 Test surlate
PFCof ol leas]
g™

Figure 1. Figure 6.3 - Requirements Derivation: Safety Test
List of Requrement
| AL ZESTT ASTM R1337-00
"S56.2 1" Favement fiction
ST 42" Vehicle conditions
ST .4 Adhesion ulilization
ST 43" Test and procedure conditions

“A. 242417 ASTM R1337-90

Text

"This test method
cowers the measurement
of pe ak brakinag coefficdent

Figure 274 -- Example of Requirement Diagram Report

12.2.2 Requirement Table (Type A)

Use this report template to generate basic SysML Requirement reports in a tabular format. Each table shows
the requirements with their properties including the requirement ID, Name, and Text (Figure 275).

This table shows only the requirements with their properties including the requirement ID, requirement name,
and requirement text.

Report Wizard and Template

Requirement Table

D Name Text

Acceleration

Acceleration
"S7.4" | Adhesion utilization A,

A 24241 | ASTM R1357-590 "Thig test method

covers the measurement

of peak braking coefficient

of paved surfaces using

a standard reference test

tire (SRTT) as described

in Specification E1136 that

represents current

technology passenger car

radial tieg."

Braking

Braking
Capacity
Capacity
CargoCapacity
CargoCapacity
Eco-Friendliness
Eco-Friendliness
H1.2.1 | Emissions The wvehicle shall meet Ultra-Low Ermissions Yehicle
standards

Ernissions The vehicle shall meet

IUltra-Low Emissions
ehirla standards

Figure 275 -- Example of Requirement Table A Report

12.2.3 Requirement Table (Type B)

Use this report template to generate SysML Requirement reports in another specific tabular format. Each table
shows the requirements and their dependency relationships with other requirements (Figure 276).

This table is similar to the one in OMG SysML specifications.

Requirement Table

D Name Relation Supplier Name Supplier Type
Acceleration DeriveReqt Fower Requirement
Acceleration DeriveReqt Fower Requirement
Acceleration Werify MaxAcceleration Interaction
Acceleration Refine Accelerate UseCase
Acceleration Werify MaxAcceleration Interaction

A 24241 | ASTM R13357-90 DeriveReqt Faverment friction Requirement
Braking DeriveReqt RegenerativeBraking Requirement
CargoCapacity DeriveReqt Fower Requirement
FuelCapacity DeriveReqt Range Requirement
FuelEconomy DeriveReqt RegenerativeBraking Requirement
FuelEconomy DeriveReqt Range Requirement
FuelEconomy DeriveReqt FowerSourceanagement Requirement

55.4.1a | LossOfFluid Satisfy m Fart Property
S55.4.1 | Master Cylinder Efficacy Refine Decelerate Car UseCase
S55.4.1 | Master Cylinder Efficacy DeriveReqt Reservair Requirement
S55.4.1 | Master Cylinder Efficacy Satisfy BrakeSystem Block
S55.4.1 | Master Cylinder Efficacy DeriveReqt LossOfF luid Requirement
OffRoadC apability DeriveReqt Fower Requirement

"5Sb.2.1" | Pavement friction DeriveReqt Test and procedure conditions Requirement

T P A T P e m e h A e e e P v 0

Figure 276 -- Example of Requirement Table B Report

Report Wizard and Template

12.2.4 Requirement Report

Use the Requirement Report template to generate a requirement report of the selected requirement elements.
A Requirement Report template will show the properties of all selected requirements (Figure 277).

hsbrid cportutilty vehlols RequirementReport
Drate: Juby 15, 2009 Revigion: 10
HSUV Requirements

HSUV Specification

1 Eco-Friendiness

L1 BEnleslons
The we bk shallmeet Uira-kow Bm s s vebkzle stavdands
Werlfled Byt
Lr] E4 PFuazlEcoiomyTest

2 Performance

The HyLric SUW s hall kave e Drak g, acce ke raton , avd o ioadl capal Ik of a typlca 15Uy, bt
kaw dramatially eter tel econamy

2.1 Eraking
The HybBrld SUY shall bawe the brak g capaslify ota ypkal SUy.
Carlved:

I Beclene rathe B raking
Curlvad Requiraments:
OO ¢l Becpene rative Braklie
2.2 FuslEzonomy
The Hyarlc HSUY shall kave dramatically et teel economy tav atpial SUvV

Frobleme:
Power wee ced horacce kration, otFosd e b mance S cano capactty conmict with
e | econonmy

Carlved:
I Redge ne rathe B raklng
O pows rSonree M anade ment
M Rawe
Carlved Requiraments:
PHel Precpe e rative Brakli e
O g2 Range
O o3 powe rSonrce Manad ement
2.3 CftRoadCapablity
The Hybrld SUW shall kaw the ofroad casablity of a typkal SUY.
Cerlved:
O powsr
Corlved Requirameants:

Corderdal Wo Ragle ne, Fi

Figure 277 -- Sample of Requirement Report Template

The content in this kind of report contains:
e (i) Category of Information Generated from Requirements

e (ii) Requirements Sort in Reports

e (iii) Anchored Elements of Requirement

e (iv) Appendix A for Captured Diagram Images
e (v) Hyperlinks in Generated Reports

Report Wizard and Template

(i) Category of Information Generated from Requirements

Information generated from each selected requirement can be categorized into five sections:
e (a) Heading section
e (b) Text description section
e (c) Documentation section
e (d) Requirement properties section
e (e) Requirement related element section

(a) Heading section

This section contains a requirement heading that consists of a requirement ID number and name.

(b) Text description section

This section contains a text property that describes the requirement.

(c) Documentation section

This section consists of documentation, hyperlinks, and texts of anchored elements to the requirement.
(d) Requirement properties section

This section will contain properties such as Master, Risk, Source, VerifyMethod, and also additional tags of user
defined requirement stereotypes.

(e) Requirement related element section

This section will show model elements that are related to the requirement.

(ii) Requirements Sort in Reports

Requirements in reports will be arranged in the requirements hierarchy starting with the package that contains
the selected requirements. The heading section, which contains sub packages and requirements, will be
labeled with the package name. The requirements in the same level will be sorted by their ID numbers.

(iii) Anchored Elements of Requirement

Notes and comments, which are anchored to a selected requirement, will also be shown in the generated
report. Comment elements will be grouped by the applied stereotype, for example, Rationale or Problem.

Report Wizard and Template

req [& 1

==requirement==

FuelEconomy <<Problems= =
I ="2.2" Poweer needed for acceleration,
Text="The Hybrid HSLY [" |off-road performance & cargo
shall have dramatically capacity conflicts with fuel

EConamy

hetter fuel economy than a
trpical S

Figure 278 -- Fuel Economy Requirement Anchored by Problem Element

2.2 FuelEconomy
The Hybrid HSIW shall have dramatically better fuel economy than a typical 3L
Problems:

Fower needed far acceleration, off-road performance & cargo capacity conflicts with
fuel econarmy

Figure 279 -- Generated Text of Problem Element in the Report

An image object, which is anchored to the anchored comment element of the requirement, will be captured into
the report document under the anchored comment element text.

pkg [reguiremert] Inverted Pendulum System [index pkg]J

=<requirement==
Inverted Pendulum System

d="FR1" AN

==Camment==
Aninverted pendulum (also
called a cart and pole)
consists of a thin rod attached
atits hottormn to a moving cart.
. Whereas a narmal pendulum
~ iz stable when hanging
Pendulum dowrwards, 2 vertical inverted
pendulum is inherently
o unstable, and must be actively
y halanced in order to rermain
= lupright, typically by moving the
. cart harizontally as part of a

feedhack system.

Text="The inverted pendulum system can contral the
pendulum upright by mowve the cart horizantally even
though the disturbance is applied to the pendulum,
maoreoverthe user can change the controller gain ofthe
feedback controller to meet the required response”

Computer

E Muolor
!

E;'l'k‘d'-" The inverted pendulum is a
- classic problem in dynamics
M and contral theory and widely

Cart used as benchmark far
AN testing control algorithmes.

Amplifier

e
=
=
=

@)

Power Supply

Figure 280 -- Image Object Anchored to the Comment Element of Requirement

Report Wizard and Template

InvertedPendulum Requirement Report
Date: July 17, 2009 Revision: 1.0

FR1 Inverted Pendulum System

The inverted pendulum system can control the pendulum upright by move the cart horizontally even
though the disturbance is applied to the pendulurn, moreover the user can change the controller gain
of the feedback controller to rmeet the reguired response.

Comment:

Anirverted pendulum (also called a cart and pole) consists of a thin rod attached at
ts bottam to a maving cart. YWhereas a normal pendulum is stable when hanging downwards,
avertical inverted pendulum is inherently unstable, and must be actively balanced in order to
rermain upright, typically by moving the cant horizontally as part of a feedback system.

The inverted pendulum is 2 clagsic problem in dynamics and control theory and
widely used as benchmark for testing contral algorithms.

Tendulum

Computer

— Motor
\

Power Supply

@

Figurel.Inverted Pendulum Systern Image

Figure 281 -- Generated Report with Generated Image Object

(iv) Appendix A for Captured Diagram Images

If the elements generated in the document have hyperlinks to diagrams, the diagrams will be captured and
given in Appendix A: Diagrams.

Report Wizard and Template

hybrid sport utility vehicle Feguirement Report
Date: July 1%, 2009 Revision: 1.0

Appendix A: Diagram

Figure B 12 Establishing Derived Requirements and
Rationale from Lowest Tier of Reqquirements Hierarchy

req [Pockege] HELY Reoiremenis [[s 5 12 Establishing Derivac Rexirements and Raliorsde from _owest Tir of Reqauirerents Hirsrchy ||
a ePraviumse oo ebmten |
Index Fiuawre 511 Fira B.13 |
=TGR erEiT Emanl== | worequiemert=» UL B e A =g AT
Hraking FuelEconamy lueu:-p-m;r OffftoadCapability Acceleration CargoCapacity
& X x 3 e
~
P s o % b \
¥ d : - 5 ~ .
; 1 RS 0 b
“ !
! I = Yecerive fects X ' ’
sarkeriveRegt=s | =:n|:ri'l'frp.f:|:|1=‘ | 8 LN e ittty
| ? | Vg v eederieReds
I =gt gRan ‘ < TE AT R \ d
\ g ™ Range ~ i i
i/ . |
: L
SereguinsTerEa 1 \
Regenerativeiraking \ =P OBl = s A
e e ——— | [Pewer rmeded for accelerstion, ot road performance & | ==ragurameni=r
\|zaroo canachy confiict with fuel sconoy | Power
h e
Fefined By= L} o
HELY Cperatonal States | el
. ; - ccftaiionake=s =
- = Posves daiy ary must hagpen by
FEISk emenis coordnaled corkrol of g srel sieckic
Powes SourceManagement maRnrs. See Hek Desipn Gudance

Figure B 12 Establishing Derived Reguirements and Rationale from Lowest Tier of
Requuirements Hierarchy

Figure 282 -- Sample of Appendix A: Diagrams

(v) Hyperlinks in Generated Reports

If the text of related elements generated in the document is a requirement element, a hyperlink will be created
for navigating to the section that contains the information of the related requirement. For a non-requirement ele-
ment that has an active hyperlink to a diagram, a hyperlink text will be generated for the element and will navi-
gate to the captured image of the diagram in the appendix.

As for the generated text of an hyperlink that links to a diagram, the diagram will be captured as an image and
given in the appendix of the generated document. Then the hyperlink text is then generated to navigate to the
captured image of the diagram.

12.2.5 Coverage Analysis

This report lists the elements for coverage analysis at higher and lower levels of abstraction. Coverage analysis
is indicated by traceability properties pointing to higher level of abstraction (Specification) and lower level of
abstraction (Realization) elements, providing visibility of other related elements. This section allows you to visu-
alize and verify that Analysis, Design, and Implementation model elements are well covered.

Report Wizard and Template

Coverage Analysis

The report section lists the elements for coverage analysis at higher and lower levels of abstraction.
Mot covered parts for verification of implementation completeness and redundant artifacts are
indicated in this report.

Coverage analysis is indicated by traceability properties pointing to higher level of abstraction
(Specification) and lower level of abstraction (Realization) elements, providing visibility of other relate
elements.

The main objective of this report is to visualize and verify that Analysis, Design, and Implementation
model elements are all covered. For example, all requirements are covered with at least one test case
to verify them.

Mote: MagicDraw can automatically create advanced tables presenting the impact of a change on a
set of artifacts at any level in the development process.

Forward Traceability — Realization

Forward traceability ensures that all specified requirements are implemented.

Realizing Requirements for Leaf Requirements

The Realizing Reguirements property of a Requirement shows how the Requirement is directhy
realized by other Reguirement(s) in lower level of abstraction. Requirements are connected through
one of the relations: Refine, Derive, Copy, Ownership.

The All Realizing Requirements property of a Requirement shows how the Reguirement is
directhyindirectly realized by other Reguirement(s) in all lower levels of abstraction.

The following table demonstrates leaf Reguirements’ coverage by other requirements, where a leaf
Requirement refers to the Reguirement which does not own any Requirement.

Leaf Requirements Realizing Requirements All Realizing Requirements
| 54 LE d4 Power LE NA PowerSourceManagement
Acceleration HSUVM o {quLJ_-;rvm::Iel HSUW O 4.4 Power

del -HSUV equirements] g.= Fower

Require ments::HSUV

Specification::Performa

nce]

8 91 L8 d.1 RegenerativeBraking L8 d.1 RegenerativeBraking
Braking IHSUVModel:-H [HSUVModel::HSUV

—g_gu_r-___- : Reguire ments]

Require ments::HSUV

Specification::Performa

Figure 283 -- Sample of Appendix B: Coverage Analysis

12.2.6 Requirement Dependencies Report

Use the Requirement Dependencies template to generate reports showing the properties of the related require-
ment elements in a specific scope. The properties are Master, Derived From, Refined By, Satisfied By, Traced
To, and Verified By. The content in this kind of report contains:

(i) Dependency Table
(ii) Appendix for Requirements Text Table

221 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

(iii) Appendix for Captured Diagram Images
(iv) Hyperlinks in Generated Reports

(i) Dependency Table

They will be categorized in the table of related dependencies. The requirement Dependencies template can
generate six tables:

(a) Copy Table
(b) Derive Table
(c) Refine Table
(d) Satisfy Table
(e) Trace Table
(f) Verify Table

(a) Copy Table
The Copy table shows the requirement and its master requirement. The table consists of three columns: (a) ID,

(b) Name, and (c) Master respectively. Requirements in this table will be sorted by the requirement ID.

e (a) ID: This column shows the requirement ID of the copied requirement, which is the client of
the Copy dependency.

e (b) Name: This column shows the name of the copied requirement (the client of the Copy
dependency).

e (c) Master: This column shows the requirement that is the supplier of the Copy dependency.

Copy

Master

c.l T CapiedPerfarmance [HSUWMaodel: HSLY 8 2 Performance [HSUWModel :HSUY Requirements::HSUY Specification]
Requirements: :Copied Requirements]

Figure 284 -- Copy Table

(b) Derive Table

The Derive table shows the relationship between the requirements that are related and the deriveReqt depen-
dency. There are three columns in this table: (a) ID, (b) Name, and (c) Derived From respectively. Require-
ments in this table will be sorted by the requirement ID.

e (a) ID: This column shows the requirement ID of the derived requirement, which is the client of
the deriveReqt dependency.

e (b) Name: This column shows the name of the derived requirement (the client of the
deriveReqt dependency).

e (c) Derived From: This column shows the requirements that are the suppliers of the deriveReqt
dependency whose client is the derived requirement represented by the requirement ID and
name.

Report Wizard and Template

Derive

dl

Name Derived From

M RegenerativeBraking [HSUYMode! HSUY BB 2.1 Braking [HSIWMade|: HSIY Require ments: HS LY
Requirements] Specification::Performance]

BB 2.2 FuelEconomy [HSUYModel::HSUY Requirements:iHSUY
Specification: :Performance]

dz

B Range [HSUWModel:HSUY Requirements] B 2.2 FuelEconomy [HSUYModelHEUY Requirerments HSUY
Specification::Performance]

B8 3.1 FuelCapacity [HSUvModel HSUY Requirements: HSUY
Specification: :Capacity]

d3

= PpwerSourceMana emment [HSUWModel HELY F8 2.2 FuelEcanamy [HEUWModel HELY Requirements:HSLY
Reguiraments] Specification::Performance]
T 4.4 Power [HSUYModel: HSUY Requirerments]

d4

B8 Power [HSUYModel: HSUY Requirements] T 2.3 OffRoadCapability [HSUVMode |: HSUY Require ments: HSUY
Specification::Performance]

BB 2.4 Acceleration [HSUYModel: HSIY Requirements: HSLY
Specification: :Performance]

08 3.3 CargoCapacity [HSLUYMode | HSUY Require mernts: HS LY
Specification: :Capacity]

Figure 285 -- Derive Table

(c) Refine Table

The Refine table shows requirements and the elements that refine them. The requirements in this table will be
sorted by the requirement ID. There are three columns in this table: (a) ID, (b) Name, and (c) Refined By

respectively.

e (a) ID: This column shows the ID of the requirement, which is the supplier of the Refine
dependency.

e (b) Name: This column shows the name of the requirement (the supplier of the Refine
dependency).

e (c) Refined By: This column shows the elements that refine the requirement (the client of the
Refine dependency).

Refine
1D Name Refined By

2.4 O Acceleration [HSUYModel: :HSUY Requirements:HSUY | € acclerate [HSUYMadel: HELY UseCases: Hybridge SUv]
Specification: :Performance]

d.3 M PowerSource Management [HSLYModel: HSUY HEUY Operational States [HSUYModel::HSUY Behavior]
Requirements]

Figure 286 -- Refine Table
(d) Satisfy Table

The Satisfy table shows requirements and the elements which satisfy them. The requirements in this table will
be sorted by the requirement ID. There are three columns in this table: (a) ID, (b) Name, and (c) Satisfied By

respectively.

223

e (a) ID: This column shows the ID of the requirement, which is the supplier of the Satisfy
dependency.

e (b) Name: This column shows the name of the requirement (the supplier of the Satisfy
dependency).

e (c) Satisfied By: This column shows the elements that satisfy the requirement (the client of the
Satisfy dependency).

Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

Satisfy

Satisfied By

2.3 O CargaCapacity [HSWMadel HS LY = Baggage [HSUviodel]
Requirements:HSUY Specification::Capacity]

a1 L8 SafetyTest [HSUWModel HSUY Requirements HSLY E ExternalObject [HSU4odel]
Specification: : Qualific ation]

d4 O Power [HSUWModel: HSUY Requirerments] B powsrSubsystem [HEUVModel HSUY Struchure]

Figure 287 -- Satisfy Table
(e) Trace Table

The Trace table shows requirements and the elements to which they trace. The requirements in this table will
be sorted by the requirement ID in the first column. There are three columns in this table: (a) ID, (b) Name, and
(c) Traced To respectively.
e (a) ID: This column shows the ID of the requirement, which is the supplier of the Trace
dependency.
e (b) Name: This column shows the name of the requirement (the supplier of the Trace
dependency).
e (c) Traced To: This column shows the elements to which the requirement is traced (the client of
the Trace dependency).

Traced To

2.4 B Acceleration [HSUYModel::HSUY Requirements:HSUY | B Power [HSUYMadel::HSUY Structure]
Specification: :Performance]

Figure 288 -- Trace Table
(f) Verify Table

The verify table shows the requirements and the elements which verify them. The requirements in this table will
be sorted by the requirement ID. There are three columns in this table: (a) ID, (b) Name, and (c) Verified By
respectively.

e (a) ID: This column shows thelD of the requirement, which is the supplier of the Verify

dependency.
e (b) Name: The column shows the name of the requirement (the supplier of the Verify
dependency).
e (c) Verified By: The column shows the elements which verify the requirement (the client of the
Verify dependency).
Verify
D Name verified By
11 B Emissions [HS5UYMadel: :HSUY Requirements :HSUY T3 EAPFuelEcanamyTest [HSWModel: Test]
Specification::Eco-Friendiness]
2.4 B8 Acceleration [HSUvMadel::HSUY Requirments:HSUY | &3 May Azceleration [HSUYModel: HSUY Requirements]
Specification: :Performance]]
B2 Max Acceleration [HSUYModel: HSUY Requirerments]

Figure 289 -- Verify Table

224 Copyright © 2006-2011 No Magic, Inc.

Report Wizard and Template

(if) Appendix for Requirements Text Table

All requirements shown in the table of requriement dependencies will be given in the requirement table in
Appendix A: Requirement. The table will contain text that describes each requirement.

hybeid sport utility vehicle Requirement Dependencies Report
Date: July 16, 2009 Revision: Revision: 1.0

Appendix A: Requirement Text Table

ID Name Text
1 E Eco-Friendiness
1.1 L Emiszions The wehicle shall meet Uttr s low Emissions wehicle standards
2 0 Performance The Hybrid SUY shall bave the braking, accelerstion, and offroad capahbility of a typical
SUV, but have dramatically better fuel economy
2.1 LE Braking The Hyhrid SUY shall have the braking capability of a typical SUV.
2.2 T FuelEconomy The Hybrid HEUY shall have dramatically hetter fuel economy than a typical SUY
2.3 8 OffRoad Capability The Hybrid SUY shall bave the off+oad capability of & typical SUW.
2.4 E acceleration The Hybrid SU% shall have the accelerstion of a typical SUY.
3 B Capacity
31 E FuslCapaciy
3z T PazzengerCapacity
3.3 O CargoCapacity
4 B Ergonomics
5 O Qualification
5.1 O SafetyTest
Corfidertial Mo Magic Ine, 7

Figure 290 -- Appendix A: Requirement Text Table

(iii) Appendix for Captured Diagram Images

If the elements generated in the document have hyperlinks to the diagrams, the diagrams will be captured and
given in Appendix B: Diagrams.

(iv) Hyperlinks in Generated Reports

If the text of a related element generated in the document is a requirement element, a hyperlink for navigating
to the section that contains the information of the related requirement in Appendix A will be created. In the
appendix, if the requirement has an active hyperlink to the diagram, the hyperlink text will be generated and will
navigate to the captured image of the diagram in Appendix B of the document.

12.2.7 Requirements Table Diagram Report

Use the Requirements Table Diagram template to generate a requirement report document in the tabular style
of the SysML Requirements Table diagram. The generated table will consist of 8 columns:

(a) ID,

(b) Name,

(c) Text,

(d) Requirement Type,
(e) Owner,

Report Wizard and Template

(f) Risk,
(g) Source, and
(h) Verify Method.

Requirements in the table will be sorted by the requirement ID. This template will be used to generate require-

ment reports from the Requirements Table diagrams.

hybrid sport utility ve hide
Date: July 15, 2009

Tabular Requirements Diagram Report
Revision: Revision: 1.0

- A Yerify
1D LET TS Text Requirement Type Owner Source Risk Method
1 L% Eco-Friendiness Requirement I HSUY Specification
[HSUyModel: :H5Uy
Requirements]
1.1 8 Emissions The vehicle shall meet Ultra- Requirement = . "
lovy Emissions wehicle [HSELIE\:I'?\;IEQEEI; q;'nsejvs
standards Requirements: HILY
Specification]
z 8 Perfarmance The Hyhrid S shall have the | Performance = e Medium
braking, acceleration, and off- | Requirement [Hsﬁﬁquvdsﬁéﬁgﬁ\?m
road capability of a typical Fequi - et. §
SUV, but have dramatically equirements]
better fuel economy
2.1 CH Braking The Hyhrid SV shall have the | Performance 7 Performance High
braking capability of a typical Requirement [HS UvMadel :HsUY
SUY. "
Requirements: HILW
Specification]
2.z T8 FyelEconomy The Hyhrid HEUY shall have Performance 7 Performance High
dramatically better fuel Requirement HS LMo el sHSLUY
economy than a typical S [Requirerﬁeﬁtlsl' HELY
Specification]
2.3 0 OffRoadCapability | The Hybrid SUV shall have the: | Performance [P Performance Medium
off+oad capability of & typical Requirement [H5UWModel: :HUY
S, "
Requirements: :HILY
Specification]
2.4 08 acceleration The Hybrid SUV shall have the | Performance m Medium
acceleration of & typical SUW. Requirement [HSlil?frl\fﬂDordmealnf-!eSUV
Requirements: (HILY
Specification]
Confidential Ma Magic Inc, 7

Figure 291 -- Report Generated Using SysML Requirements Table Diagram Template

(i) Appendix for Captured Diagram Images

If the requirements generated in the document have active hyperlinks to the diagrams, the diagrams will be
captured and given in Appendix A: Diagrams.

(ii) Hyperlinks in Generated Reports

For a requirement that has an active hyperlink to the diagram, a hyperlink text will be generated for the name of
the requirement in the Name column. The hyperlink will navigate to the captured image of the diagram in
Appendix A of the document.

12.3 Allocation Report Templates

Use Allocation Report Templates to generate Allocation reports, each report providing a summary of the «allo-
cate» dependency in a SysML project.

OMG SysML Specifications recommend Allocation dependencies to be depicted in tables, which facilitate auto-
mated verification and validation (V&V) and gap analysis. The tables generally contain information on «allo-
cate» dependencies, their clients, and suppliers, and also on the types of the clients and suppliers. You can
generate an Allocation report using the whole project or some elements selected from the Report Wizard dia-

log.

There are three available template styles:

Report Wizard and Template

(12.3.1) Allocation Table (Type A)
(12.3.2) Allocation Table (Type B)
(12.3.3) Allocation Table (Type C)

12.3.1 Allocation Table (Type A)

This table shows a summary of the «allocate» dependencies with their properties, including the supplier types
and names as well as the client types and names (Figure 292).

Allocation Table

Type Name End | Relation | End Type Name
Call Behavior Action al:ProportionFower from allocate to Part Property REGH.
Call Behavior Action a2:ProvideGasPower from allocate to Part Property ice
Call Behavior Action a3:ControlElectricPower from allocate to Part Property epc
Call Behavior Action ad-ProvideElectricPower from allocate to Part Property em

Figure 292 -- Example of Allocation Table A Report
12.3.2 Allocation Table (Type B)

This table differs from Type A in that it shows «allocate» dependencies with their properties in another format
that, in addtion to including their supplier types and names, client types and names, as in Type A, also displays
the Allocation names (Figure 293).

Allocation Table

Allocate Allocated From (Source) Allocated To (Target)
Name Name Type Name Type
<ynname:s= al:ProportionPower Call Behavior Action | pgu Part Property
<ynname:s= a2:ProvideGasPower Call Behavior Action | ice Part Property
<ynname:s= a3:ControlElecticPower | Call Behavior Action | gepg Part Property
<ynname:s= ad:ProvideElectncPower | Call Behavior Action | em Part Property

Figure 293 -- Example of Allocation Table B Report

12.3.3 Allocation Table (Type C)

This table differs from Type A and B in that it shows «allocate» dependencies with their properties in another
format that, in addtion to including their names, and their supplier types and names, client types and names , as
in Type A and B, also display their client and supplier type icons (Figure 294).

You can further customize a report by opting whether to include information from the model or not. It is optional
to include element documentation and empty sections.

Model Library for Quantities, Units, Dimensions and Values (QUDV)

Allocation Table

Name Allocated From (Source) | Allocated To (Target)
7 <ypname= | = al:ProportionPower ™ peu
A <upname> | © a2:ProvideGasPower L jce
A% <ypname> | © a3:ControlElectricPower T eng
7 <unname> | = ad:-ProvideElectricPower Hem

Figure 294 -- Example of Allocation Table C Report

SysML specifications v.1.2 define the model of the quantities, units and dimensions (quantity kind) in the Annex
C : Non-normative Extensions. You can define your own quantity and unit using the QuantityKind and Unit
blocks defined in QUDV Library.

13.1 QUDV Model Library in SysML Plugin

QUDV Model Library is available for use in every new SysML project, created from SysML plugin 16.8 (or
newer). The library, located in <md.install.dir>/modelLibraries directory, consists of four sub-libraries:

e QUDV

e Sl Definitions

e S| Specializations

e S| Value Type Library

13.1.1 QUDV

The QUDV library (QUDV.mdzip) consists of the main definitions of the new units and quantity kinds system, as
specified in OMG SysML specifications 1.2, e.g., SimpleUnit, SimpleQuantityKind, DerivedUnit, DerivedQuanti-
tyKind, AffineConversionUnit, UnitFactor, QuantityKindFactor, etc. For more detail on these definitions, see
Annex C : Non-normative Extensions in OMG SysML specifications 1.2.

13.1.2 Sl Definitions

The Sl Definitions library (SIDefinitions.mdzip) consists of predefined units and quantity kinds in QUDV system
for using in your model. You can use them in your customized units and value types.

13.1.3 Sl Specializations

The S| Specializations library (SISpecializations.mdzip) consists of a diagram (and Blocks), demonstrating how
to extend the current QUDV system.

Model Library for Quantities, Units, Dimensions and Values (QUDV)

13.1.4 Sl Value Type Library

MagicDraw SysML provides the model library that contains the pre-defined value types. You can use them for
typing the value properties in your SysML model. These value types are using the units and quantity kinds
defined in the QUDV model library.

Table 8 -- New Sl Value Type Library (QUDV-based)

Name Unit Quantity Kind
A ampere : SimpleUnit electricCurrentQK : SimpleQuantityKind
Alm amperePerMeter : DerivedUnit magneticFieldStrength : DerivedQuantityKind
A/m? amperePerSquareMeter : Derive- currentDensity : DerivedQuantityKind
dUnit
Bq becquerel : DerivedUnit radionuclideActivity : DerivedQuantityKind
C coulomb : DerivedUnit electricChargeQK : DerivedQuantityKind
cd candela : SimpleUnit luminousintensityQK : SimpleQuantityKind
cd/m? candelaPerSquareMeter : Derive- luminance : DerivedQuantityKind
dUnit
F farad : DerivedUnit capacitance : DerivedQuantityKind
Gy gray : DerivedUnit absorbedDoseQK : DerivedQuantityKind
H henry : DerivedUnit inductanceQK : DerivedQuantityKind
Hz hertz : DerivedUnit frequency : DerivedQuantityKind
J joule : DerivedUnit energyQK : DerivedQuantityKind
K kelvin : SimpleUnit thermodynamicTemperatureQK : SimpleQuantityKind
kat katal : DerivedUnit catalyticActivityQK : DerivedQuantityKind
kg kilogram : SimpleUnit massQK : SimpleQuantityKind
kg/m? kilogramPerCubicMeter : DerivedUnit |massDensityQK : DerivedQuantityKind
Im lumen : DerivedUnit luminousFluxQK : DerivedQuantityKind
Ix lux : DerivedUnit illuminanceQK : DerivedQuantityKind
m meter : SimpleUnit lengthQK : SimpleQuantityKind
m/s meterPerSecond : DerivedUnit velocityQK : DerivedQuantityKind
m/s? meterPerSecondSquared : Derive- accelerationQK : DerivedQuantityKind
dUnit
mol mole : SimpleUnit amountOfSubstanceQK : SimpleQuantityKind
mol/m® | molePerCubicMeter : DerivedUnit amountOfSubstanceConcentration : DerivedQuantity-
Kind
m? squareMeter : DerivedUnit areaQK : DerivedQuantityKind
m?3 cubicMeter : DerivedUnit volumeQK : DerivedQuantityKind
m?kg cubicMeterPerKilogram : DerivedUnit |specificVolumeQK : DerivedQuantityKind
m™* reciprocalMeter : DerivedUnit waveNumberQK : DerivedQuantityKind
N newton : DerivedUnit forceQK : DerivedQuantityKind
Pa pascal : DerivedUnit pressureQK : DerivedQuantityKind
rad radian : DerivedUnit planeAngle : DerivedQuantityKind

Model Library for Quantities, Units, Dimensions and Values (QUDV)

Name Unit Quantity Kind
second : SimpleUnit timeQK : SimpleUnit
S siemens : DerivedUnit electricConductanceQK : DerivedQuantityKind
sr steradian : DerivedUnit solidAngle : DerivedQuantityKind
Sv sievert : DerivedUnit doseEquivalentQK : DerivedQuantityKind
T tesla : DerivedUnit magneticFluxDensityQK : DerivedQuantityKind
\'} volt : DerivedUnit electricPotentialDifferenceQK : DerivedQuantityKind
w watt : DerivedUnit powerQK : DerivedQuantityKind
Wb weber : DerivedUnit magneticFluxQK : DerivedQuantityKind
°C celciusTemperature : AffineConver- celciusTemperatureQK : DerivedQuantityKind
sionUnit
Q ohm : DerivedUnit electricResistanceQK : DerivedQuantityKind

13.2 Migrating Existing SysML Project To Use QUDV Model Library

If your SysML project was created by an older version of SysML Plugin, or by the SysML without QUDV tem-
plate, QUDV is not used in your project yet.

To migrate your SysML project to use QUDV model library:

e Using QUDV Model Library in SysML Project
e Replacing/Modifying Existing Value Types
e Modifying Units and Quantity Kinds of Existing Value Types

13.2.1 Using QUDV Model Library in SysML Project

To use QUDV model library in your SysML project:

1. Open your SysML project.

2. Select File > Use Module... on the main menu.

3. The Use Module dialog will then open.

4. In step 1. Select module, select From predefined location radio button, and then select
<install.root>/modelLibraries.

5. Select QUDV model library.

6. To also use Sl Definitions, Sl Specializations and/or Sl Value Type Library model
library(ies), repeat step 2 to 4. Then, select the required model library.

13.2.2 Replacing/Modifying Existing Value Types

Next, you should substitute your existing Value Types with ones from the Sl Value Type Library model library.
If any Value Type is missing from the Sl Value Type Library model library, you can either

(i) create a new Value Type by following the instructions in Section 13.3.3 Creating New Value
Type, or

(i) modify the existing Value Type in your project by modifying its unit and quantity kind to be
consistent with QUDV specification (see Section 13.2.3).

Model Library for Quantities, Units, Dimensions and Values (QUDV)

13.2.3 Modifying Units and Quantity Kinds of Existing Value Types

Since SysML plugin version 16.6, units and quantity kinds’ base classes can be either DataType (standard
style) or InstanceSpecification (QUDV style). To adopt QUDV in your SysML project, user-defined units and
quantity kinds should be changed from DataType to InstanceSpecification. To do that, you must replace each
existing unit and quantity kind defined as a DataType with a new one defined as an InstanceSpecification. See
section “13.3.2 Creating New Unit” and “13.3.1 Creating New Quantity Kind” on how to create a new Instanc-
eSpecification-based unit and quantity kind, respectively.

See Annex “C.5 Model Library for Quantities, Units, Dimensions and Values (QUDV)” in OMG SysML specifica-
tions 1.2 for more detail.

13.3 Creating New Quantity Kind, Unit or Value Type in QUDV
Library

13.3.1 Creating New Quantity Kind

For the quantity kind, you can create a new quantity kind by creating an InstanceSpecification whose classifier
is one of QuantityKind subtype, i.e. SimpleQuantityKind, DerivedQuantityKind and SpecializedQuantityKind.
You can create a quantity kind using either Browser Shortcut Menu or Diagram Toolbar (of BDD). Open the
quantity kind’s specification dialog, and then change its slot value(s) according to the QUDV specification.

To create, for example, the “celsiusTemperatureQK” quantity kind in the Sl Definitions model library:

1. Create a Quantity Kind using either Browser Shortcut Menu or Diagram Toolbar (of BDD).

2. Since there is another temperature quantity kind “thermodynamicTemperatureQK” already
defined in the Sl Definitions model library, the newly-created quantity kind can be derived from
such quantity kind. Thus, choose the DerivedQuantityKind to be the base classifier of the
newly-created quantity kind.

3. If not already exist, create a new InstanceSpecification “thermodynamicTemperature*1QKF”,
having “QuantityKindFactor” as its base classifier, in order to define the quantity kind factor to
be used in the newly-created quantity kind. Open the InstanceSpecification specification dialog,
and then assign the following values to its slots:

e quantityKind : QuantityKind = thermodynamicTemperatureQK

e exponent : Rational = “1,1” (means “1/1” or “17)

where Rational is of the format “numerator : Integer, denominator : Integer” which refers to a
rational number: numerator / denominator.

A quantity kind using such factor (thermodynamicTemperature®1QKF) actually refers to the
same dimension as thermodynamicTemperatureQK quantity kind.

4. Open the newly-created quantity kind specfication dialog.

5. Assign the name of the quantity kind to be “celsiusTemperatureQK”.

6. Select the Slots property group, and then assign the corresponding slot values:
e name : String (mandatory) = “Celsius temperature”

e factor : QuantityKindFactor = “thermodynamicTemperature*1QKF”

See Annex “C.5 Model Library for Quantities, Units, Dimensions and Values (QUDV)” in OMG SysML specifica-
tions 1.2 for more detail.

Model Library for Quantities, Units, Dimensions and Values (QUDV)

13.3.2 Creating New Unit

To create a new unit, you have to create an InstanceSpecification whose classifier is one of Unit subtype, i.e.
SimpleUnit, DerivedUnit, GeneralConversionUnit, AffineConversionUnit, LinearConversionUnit and PrefixUnit.
You can create a unit using either Browser Shortcut Menu or Diagram Toolbar (of BDD). Open the unit’s speci-
fication dialog, and then change its slot value(s) according to the QUDV specification.

To create, for example, the “celsiusTemperature” unit in the Sl Definitions model library:

1. Create a Unit using either Browser Shortcut Menu or Diagram Toolbar (of BDD).

2. Since there is another temperature unit already defined in the Sl Definitions model library, i.e.
“kelvin”, and the conversion from “kelvin” to “celsius” is of the format defined in Annex 3.5.2.1
AffineConversionUnit in OMG SysML specifications 1.2; choose the AffineConversionUnit to be
the base classifier of the newly-created unit.

3. Open the unit specfication dialog.
4. Assign the name of the unit to be “celsiusTemperature”.

5. Select the corresponding Quantity Kind, e.g., “celsiusTemperatureQK” or “thermodynamicTem-
peratureQK”.

6. Select the Slots property group, and then assign the corresponding slot values:
e name : String (mandatory) = “celsius temperature”

e quantityKind : QuantityKind (mandatory) = celsiusTemperatureQK
e isInvertible : Boolean = true (always true for AffineConversionUnit)
e symbol : String = “\degree C”

e referenceUnit : Unit = kelvin

e factor : Rational = “1,1” (means “1/1” or “17)

e offset : Rational = “273.15,1” (means “273.15/1” or “273.15”)

where Rational is of the format “numerator : Integer, denominator : Integer” which refers to a
rational number: numerator / denominator.

See Annex “C.5 Model Library for Quantities, Units, Dimensions and Values (QUDV)” in OMG SysML specifica-
tions 1.2 for more detail.

13.3.3 Creating New Value Type

13.3.3.1 Create a new Value Type using existing Unit and Quantity Kind in the SIDefinition model library
1. Create a new Value Type using diagram toolbar of SysML Block Definition Diagram or Contain-
ment browser context menu New Elements > SysML Values > ValueType.
2. Specify the Unit and Quantity Kind attributes of this Value Type with a Unit and the correspond-
ing Quantity Kind in SIDefinition model library.
3. Optional: Create a new Value Type specializing another Value Type, e.g. Quantity, Real, Com-
plex, etc.

Model Library for Quantities, Units, Dimensions and Values (QUDV)

wvalueTypes #valueType:s
m (Real) ' Real

wvBlueTypen)
unit= 0 metre

Quaniity Kind
QLD Likirary: SIDefinitions::lengthciks
|
gimodelLibrary:
SIDefinitions
- Lnit:
Euantty Hind: i
lengthOK metre
Tquantitylind = lengthQk}

Figure 295 -- Value Type with the Existing Unit and QuantityKind in SIDefiniton Model Library

13.3.3.2 Create a new Value Type using a new Unit and an existing Quantity Kind in the SIDefinition
model library
1. Create a new Unit from the diagram toolbar of Block Definition Diagram. Then, assign a Quan-
tity Kind in the SIDefinition model library to the newly-create Unit.
2. Create a new Value Type, and specify the unit and quantity kind attributes with the Unit and
Quantity Kind in step 1.

gvalueTypes:
yd ———

wvBluaTypes
unit= @yard

svalueTypes
Real

Quantity Kind
QDY Likrary:SIDefinitions::length &k

|

wmodelLibrary:

SIDefinitions

sl nit |
gEantityHinds yard
lengthQK fquantitykind = length 2k}

Figure 296 -- Value Type with the New Unit and the Existing QuantityKind in SiDefiniton Model Library

13.3.3.3 Create a new Value Type using new Unit and Quantity Kind
1. Create a new Quantity Kind from the diagram toolbar of Block Definition Diagram.
2. Create a new Unit from the diagram toolbar of Block Definition Diagram. Then, assign the
Quantity Kind in step 1 to the newly-create Unit.
3. Create a new Value Type, and specify the unit and quantity kind attributes with the Unit and
Quantity Kind from step 2 and step 1, respectively.

Model Library for Quantities, Units, Dimensions and Values (QUDV)

«Valun&:}'ype» L evalueTypes
i Real
wwlueTypes
unit= mCubicketerPerSecond

Quantity Kind
Tips and Tricks:MValueType Linit and Quantitykind fwith QLD FlowRate
zlnit:
saantityKinds CubicMeterPerSecond
FlowRate fquantitykind = FlowR ate}

Figure 297 -- Value Type with the New Unit and QuantityKind

13.3.3.4 Create a new ValueType which is specialized the Quantity value type in QUDV

1. Create a new ValueType with one of the steps described above without any generalization rela-
tionship.

2. Make the newly-created ValueType to be specialized of the Quantity by creating a generaliza-
tion relationship from the newly-created ValueType to the Quantity [QUDV Library::QUDV]

3. Create a new property of the newly-created ValueType. It will be redefined property of the
Quantity::value. This property will be named 'value' and typed by the subtype of Number (Real,
Complex, Integer).

4. Create a new static property of the created ValueType. It will be redefined property of Quan-
tity::unit. The created property will be named 'unit' and typed by a Unit. The multiplicity of this
static property is [0..1] and the default value of this property will be set to the InstanceSpecifica-
tion which is the unit of the created ValueType.

5. Create a new static property of the created ValueType. It will be redefined property of Quan-
tity::quantityKind. The created property will be named 'quantityKind' and typed by QuantityKind.
The multiplicity of this static property is [0..1] and the default value of this property will be set to
the InstanceSpecification which is the quantity kind of the created ValueType.

13.4 Validation Rules for Detecting the Using of Obsoleted Units and
Quantities

Since MagicDraw SysML plugin version 17.0.1, the validation rules for detecting the using of unit and quantities
which are data types are added. These validation rules detect the units and quantities which are data type, as
the invalid elements (as obsoleted unit and quantity). The suggested solutions will be provided to help you solv-

ing the problems.

Suggested solutions for obsoleted unit

1. Replace with a new QUDV simple unit: When this suggested solution is selected, a new
QUDYV simple unit will be created. It is an InstanceSpecification whose classifier is the SimpleU-
nit that defined in QUDV library. This instance will be applied with the <<unit>> stereotype. The
name and the quantity kind of the newly created QUDV simple unit will be the same as the
name and the quantity kind of the obsoleted unit. After create a new QUDYV simple unit for
replacing the obsoleted one, the unit attribute of all value types which are defined with this
obsoleted unit, will be replaced with the new one.

Traceability

2. Replace with a new QUDV derived unit: This suggested solution is similar to the previous
suggested solution except, the classifier of the created InstanceSpecification is the DerivedUnit

instead of SimpleUnit.
3. Replace with the selected QUDV unit: This suggested solution allows you to selected the
existing QUDV unit for replacing the obsoleted one.

Suggested solutions for obsoleted quantity

1. Replace with a new QUDV simple quantity: This suggested solution will create a new QUDV
simple quantity which is an InstanceSpecification whose classifier is the SimpleQuantity that
defined in QUDV library. This instance will be applied with the <<quantity>> stereotype. The
name of the new QUDV simple quantity will be the same as the name of the obsoleted quantity.
After create a new QUDV simple quantity, the quantity kind attribute of all value types and units
which are defined with this obsoleted quantity, will be replaced with the new one.

2. Replace with a new QUDV derived quantity: This suggested solution is similar to the previ-
ous suggested solution except, the classifier of the created InstanceSpecification is the
DerivedQuantity instead of SimpleQuantity.

3. Replace with the selected QUDV quantity: This suggested solution allows you to selected
the existing QUDV quantity for replacing the obsoleted one.

Suggested solutions for value types that use obsoleted units and quantities.

There are two validation rules detects the value types that have defined units or quantities with the obsolted
units and quantities defined in the Sl Value Type Library model library (one for detecting the using of obsoleted
unit and another for detecting the using of obsoleted quantity). When the value type is detected, the following

suggested solution will be provided for solving the problem:

1. Replace with recommend unit: This suggested solution will replace the using of the obsoleted
unit, which are defined in Sl Value Type Library, with the equivalent QUDV unit defined in SIDef-
inition library.

2. Replace with reccomment quantity: This suggested solution will replace the obsoleted quan-
tity with the equivalent QUDV quantity that defined in SIDefinition library.

Traceability includes new derived properties, Relation Map, etc. Relation Map is a very powerful tool for visual-
izing traceability (select Analyze > Create Relation Map in the main menu).

The main feature of this feature is traceability between different levels of abstraction which makes it possible to
find more specific and realizing elements, usually not from the same view. This allows for handy specification
and realization discovery, and navigation. The effectiveness of traceability across a whole project is supported

by the following MagicDraw capabilities:
e Relation Maps (for the analysis of traces among multiple levels of abstraction) - see
“Introduction to SysML.mdzip” located in <md.install.dir>/samples/SysML directory for
sample use.
e Traceability Reports (for coverage analysis) - see Coverage Analysis.

e Dependency Matrices (for the analysis of traces between any two levels of abstraction) - two
matrices for traceability are provided: “SysML Traceability Requirement All Specifying Elements
Matrix” and “SysML Traceability Requirement All Realizing Elements Matrix”. See section 10.
Dependency Matrix for more detail on how to use such matrices.

Open API

Traceability solution is based on recent DSL improvements in MagicDraw for extendable metamodels with
derived properties and two-level properties groups.

For more detail on the Traceability feature, visit http://www.magicdraw.com/newandnoteworthy/sysml.

15.1 Stereotype Usage

Standard stereotypes in SysML plugin are defined in SysML Profile and MD Customization for SysML Profile.
Both profiles have their corresponding API classes: com.nomagic.magicdraw.sysml.util.SysMLProfile and
com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile, respectively. Each class allows you to:

e Get a string constant for each property of stereotype (tag).
e Get a stereotype element.
e Check if an element is stereotyped.

See index.html in SysMLProfileJavaDoc.zip, located at “plugins/com.nomagic.magicdraw.sysml/openapi/
docs”, for the JavaDoc for the two API classes.

15.1.1 SysML Profile

You need to import com.nomagic.magicdraw.sysml.util. SysMLProfile to use this API class.

a) Get a string constant for each property of stereotype (tag)

Usage includes “SysMLProfile. STEREOTYPE_PROPERTY NAME .

For example, SysMLProfile. ALLOCATED_ALLOCATEDFROM_PROPERTY returns a string of “allocatedFrom”.
b) Get a stereotype element

Usage includes:

e “SysMLProfile.getInstance(project). getStereotype() - where project refers to the project which
uses SysML Profile.

e “SysMLProfile.getInstance(element). getStereotype() - where element refers to the element in
the project which uses SysML Profile.

For example, SysMLProfile.getInstance(project).getBlock() returns the reference to the <<Block>> stereotype
object.

c) Check if an element is stereotyped
Usage includes “SysMLProfile. isStereotype(Elem)” - where Elem is the element you would like to check.

For example, given an element “Elem”, SysMLProfile.isBlock(Elem) returns True if the element “Elem” has
<<Block>> stereotype applied, and returns false otherwise.

15.1.2 MD Customization for SysML Profile

You need to import com.nomagic.magicdraw.sysml.util. MDCustomizationForSysMLProfile to use this API class.

Open API

a) Get a string constant for each property of stereotype (tag)

Usage includes “MDCustomizationForSysMLProfile. STEREOTYPE_PROPERTY _NAME .

For example, MDCustomizationForSysMLProfile. NUMBEROWNER_PREFIX_PROPERTY returns a string of “prefix”.
b) Get a stereotype element

Usage includes:

e “MDCustomizationForSysMLProfile.getInstance(project).getStereotype() - where project refers
to the project which uses MD Customization for SysML Profile.

e “MDCustomizationForSysMLProfile.getInstance(element). getStereotype() - where element
refers to the element in the project which uses MD Customization for SysML Profile.

For example, MDCustomizationForSysMLProfile.getInstance(project).getPartProperty() returns the reference to
the <<PartProperty>> stereotype object.

c) Check if an element is stereotyped

Usage includes “MDCustomizationForSysMLProfile.sStereotype(Elem)” - where Elem is the element you would
like to check.

For example, given an element “Elem”, MDCustomizationForSysMLProfile.isValueProperty(Elem) returns True if
the element “Elem” has <<ValueProperty>> stereotype applied, and returns false otherwise.

Accept Event Action [UML]: An Accept Event Action is an action that waits for the occurrence of an event that meets the
conditions specified. Accept event actions handle event occurrences detected by the object owning the behavior. 136

Action [UML]: An action is a named element that is the fundamental unit of an executable functionality. The execution of an
action represents some transformations or processing in the modeled system. When the action is to be executed or what its
actual inputs are is determined by the concrete action and the behaviors in which it is used. 135

Activity Final [UML]: An Activity Final is a node that stops all flows in an activity. 137

Activity Parameter Node [UML]: An Activity Parameter Node is an object node for inputs and outputs to the activities. The
Activity parameters are object nodes at the beginning and end of the flows, to accept inputs to an activity and provide out-
puts from it. 136

Actor [UML]: Actors represent roles played by human users, external hardware, and other subjects. An actor does not nec-
essarily represent a specific physical entity but merely a particular facet (i.e. the "role") of some entities that are relevant to
the specifications of its associated use cases. 151

Actuator: An Actuator is a special external system that influences the environment of the system under development. For
example, Heater assembly or Central locking system of a car [1]. 151

Aggregation [UML]: An Aggregation is a special form of Association that specifies a part-whole relationship from an ‘aggre-
gate’ (whole / source) to a ‘component part’ (target). Creating an Aggregation will also create a Shared Property, typed by
the ‘component part’, in the ‘aggregate’ and a Reference Property, typed by the ‘aggregate’, in the ‘component part’. The
aggregation values of the target and source ends are 'shared' and 'none’, respectively. 19

Any Action [UML]: This element is introduced in order to maintain any other desirable action element with an appropriate
metaclass stereotype applied. 136

Association [UML]: An Association represents a semantic relationship between two classifiers. It is used for referencing two
Blocks with one another, thus creating two Reference Properties at both ends. The aggregation values of the both ends of
an Association are 'none'. 19

Association Block [SysML]: An Association Block is an Association Class (a kind of Association) stereotyped by «Blocky.
Like any other Block, an Association Block can own properties and connectors. 18

Binding Connector [SysML]: A Binding Connector is a connector which specifies that the properties at both ends of the con-
nector have equal values. If the properties at both ends of a binding connector are typed by DataTypes or ValueTypes, it
means that the instances of the properties at both ends must hold equal values, recursively through any nested properties
within the connected properties. If the properties at both ends of a binding connector are typed by Blocks, it means that the
instances of the properties must refer to the same block instance. As with any connector owned by a SysML Block, each
end of a binding connector may be nested within a multi-level path of properties accessible from the owning Block. The
NestedConnectorEnd stereotype is used to represent such nested ends, just as for nested ends of other SysML connectors.
95

Block [SysML]: Blocks provide a general purpose capability to describe the architecture of a system, and represent the sys-
tem hierarchy in terms of systems and subsystems. Blocks describe not only the connectivity relationships within / between
a system and its subsystems, but also quantitative values as well as other information about that system (for example, doc-
umentation). 14

Boundary System: A Boundary System is a special external system that serves as medium between another system and
the system under development without having its own interests in the communication. For example, Bus system or Commu-
nication system [1]. 151

Business Requirement [MDSysML]: A Business Requirement is a requirement that specifies characteristics of the business
process that must be satisfied by the system. 101

Call Operation Action [UML]: A Call Operation Action is an action that transmits an operation call request to the target
object, where it may cause the invocation of the associated behavior. The argument values of the action are available to the
execution of the invoked behavior. 135

Composition [UML]: A Composition is a special form of Aggregation which requires that a part of a Block instance be
included in, at most, one composite object at a time. The composite object is responsible for the creation and destruction of
its parts. In other words, a Composition specifies a 'strong' part-whole relationship from a ‘composite’ (whole / source) to a
‘composite part’ (target). Creating a Composition will also create a Part Property, typed by the ‘composite part’, in the ‘com-
posite’ and a Reference Property, typed by the ‘composite’, in the ‘composite part’. The aggregation values of the target and
source ends are 'composite' and 'none’, respectively. 19

Conditional Node [UML]: A Conditional Node is a structured activity node that represents an exclusive choice among alter-
natives. 137

Conform [SysML]: A Conform relationship is a dependency between a view and a viewpoint. The view conforms to the rules
and conventions specified in the viewpoint. 90

Connector [UML]: A connector is used to bind two ports together, representing a relationship between those ports. A con-
nector can be typed by an association. A logical connector can be allocated to a more complex physical path depicting a set
of parts, ports, and connectors (refer to allocation). 56

Constraint Block [SysML]: Constraint Blocks provide a mechanism to integrate engineering analysis, such as performance
and reliability models, with other SysML models. Constraint Blocks can be used to specify a network of constraints repre-
senting mathematical expressions, which constrain the physical properties of a system. Constraint Blocks are generally
defined in Block Definition Diagrams and then used in Parametric diagrams. 15

Constraint Property [SysML]: A Constraint Property is a property that specifies the constraints of other properties in its con-
taining Block. Every Constraint Property is typed by a Constraint Block. Constraint Properties are displayed in the ‘con-
straints’ compartment. 54

Control Flow [UML]: A Control Flow is an edge that starts an activity node after the previous one is finished. Objects and
data cannot pass along the control flow edge. 136

Copy [SysML]: A 'Copy' relationship is a dependency between a supplier requirement (master) and a client requirement
(slave), specifying that the client requirement text is a read-only copy of the supplier requirement text. 102

Data Store [UML]: A Data Store node is a central buffer node for a non-transient information. A data store keeps all tokens
that enter it, copies them when they are chosen to move downstream. Incoming tokens containing a particular object
replace any tokens in the object node containing that object. 136

Data Type [UML]: A Data Type is a type whose instances are identified only by their values. A typical use of Data Types
would be to represent the primitive types of the programming language used. For example, integer and string types are
often treated as data types. 17

Decision [UML]: A Decision is a control node that chooses between outgoing flows. A decision node has one incoming edge
and multiple outgoing activity edges. 137

Derive [SysML]: A 'Derive' relationship is a dependency between two requirements (a derived requirement and a source
requirement), where the derived requirement is generated or inferred from the source requirement. 102

Design Constraint [SysML]: A Design Constraint is a requirement that specifies a constraint on the implementation of a sys-
tem or on part of it. 101

Directed Aggregation [UML]: A Directed Aggregation is a one-direction Aggregation relationship which references from a
Block (‘aggregate') to another Block (‘component part'), thus creating one Shared Property, typed by the '‘component part', in
the 'aggregate’. The aggregation value of the target end of a Directed Aggregation is 'shared'. 19

Directed Association [UML]: A Directed Association is a one-direction Association which references from a Block to another
Block, thus creating one Reference Property, typed by the target Block, in the source end. The aggregation value of the tar-
get end of a Directed Association is 'none'. 19

Directed Composition [UML]: A Directed Composition is a one-direction Composition relationship which references from a
Block (‘composite') to another Block (‘composite part'), thus creating one Part Property, typed by the 'composite part', in the
‘composite’. The aggregation value of the target end of a Directed Composition is ‘composite’. 19

Distributed Property [SysML]: A Distributed Property is a property of a Block or a Value Type, used to apply a probability dis-
tribution to the values of the property. Specific distributions can be defined by applying a subclass of the DistributedProperty
stereotype to the property. 55

Domain: A Domain block represents an entity, a concept, a location, or a person from the real-world domain. A domain block
is part of the system knowledge [1]. 15

Element Import [UML]: An Element Import is defined as a directed relationship between an importing namespace and a
packageable element. The name of the packageable element or its alias are to be added to the namespace of the importing
namespace. 91

Enumeration [UML]: An Enumeration is a kind of Data Type whose instances may be any of the user-predefined enumera-
tion literals. It is possible to extend the set of applicable enumeration literals to other packages or profiles. 17

Environmental Effect: An Environmental Effect is an influence on the system from the environment without communicating
with it directly. For example, Temperature or Humidity [1]. 151

Exception Handler [UML]: An Exception Handler is an element that specifies a body to execute in case the specified excep-
tion occurs during the execution of the protected node. 137

Expansion Region [UML]: An Expansion Region is a structured activity region that executes multiple times corresponding to
the elements of an input collection. 137

Extend [UML]: An Extend is a relationship from an extending use case to an extended use case, specifying how and when
the behavior defined in the extending use case can be inserted into the behavior defined in the extended use case. The
extension takes place at one or more specific extension points defined in the extended use case. Choose a different Extend
direction from the toolbar to draw a line with an opposite arrow end. 153

Extended Requirement [SysML]: An Extended Requirement adds some properties to the requirement element. These prop-
erties are important for requirement management. Specific projects should add their own properties. 100

External System: An External System is a system that interacts with the system under development. For example, Informa-
tion server or Monitoring system [1]. 151

External: An External block is a block that represents an actor. It facilitates a more detailed modeling of actors like ports or
internal structures [1]. 15

Flow Final [UML]: A Flow Final refers to the final node that terminates a flow and destroys all tokens that arrive at it. It has
no impact on other flows in the activity. 137

Flow Port [SysML]: A Flow Port is a port that specifies the input and output items that can flow between a Block and its envi-
ronment. Flow Ports are interaction points through which data, material, or energy “can” enter or leave the owning Block.
The specification of what can flow is achieved by typing the Flow Port with a specification of things that flow. This can
include typing an atomic Flow Port with a single type (Block, Value Type, Data Type, or Signal) representing the items that
flow in or out, or typing a non-atomic Flow Port with a Flow Specification which lists multiple items that can flow. In general,
Flow Ports are intended to be used for asynchronous, broadcast, or send-and-forget interactions. Note that only non-atomic
Flow Ports can be conjugated. Once conjugated, all the directions of the typing Flow Specification’s items will be negated.
18

Flow Property: A FlowProperty signifies a single flow element that can flow to/from a block. Flow properties are defined
directly on blocks or flow specifications that are those specifications which type the flow ports. Flow properties enable item
flows across connectors connecting parts of the corresponding block types, either directly (in case of the property is defined
on the block) or via flowPorts. A flow property’s values are either received from or transmitted to an external block. 56

Flow Specification [SysML]: A Flow Specification specifies inputs and outputs that can flow through a port in terms of Flow
properties. Flow Specifications are used by Flow Ports to specify what items can flow via those ports. 16

Fork/Join Horizontal [UML]: To help control parallel actions. 137
Fork/Join Vertical [UML]: To help control parallel actions. 137

Functional Requirement [SysML]: A Functional Requirement is a requirement that specifies a behavior that a system or part
of a system must perform. 100

Generalization [UML]: A Generalization is a taxonomic relationship between a more general classifier and a more specific
one. Each instance of the specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier
indirectly has the features of the general classifier. 19

Include [UML]: An Include (uses) relationship from use case A to use case B indicates that an instance of the use case A will
also contain the behavior as specified by B. 152

Initial Node [UML]: An Initial Node is a starting point for executing an activity. It has no incoming edges. 137

Input Expansion Node [UML]: An Input Expansion Node is an object node used for indicating a flow across the boundary of
an expansion region. A flow into a region contains a collection that is broken into its individual elements inside the region,
which is executed once per element. 136

Input Pin [UML]: An Input Pin is a pin that holds input values to be consumed by an action. Input pins are object nodes that
receive values from other actions through object flows. 138

Instance [UML]: To create an instance specification of a classifier. 18

Interface [UML]: An Interface specifies operations or signals. If an Interface is provided to a port, the external parts may call
operations or send signals to the Block owning the port via that port. If an Interface is required for a port, the Block owning
the port may call operations or send signals to its environment via that port. 16

Interface Realization [UML]: An Interface Realization is a specialized Realization relationship between a Classifier and an
Interface. This relationship signifies that the realizing classifier conforms to the contract specified by the Interface. 18

Interface Requirement [SysML]: An Interface Requirement is a requirement that specifies the ports for connecting systems
and parts of a system. Optionally, it may include the items that flow across the connector and/or the Interface constraints.
100

Item Property [SysML]: An optional property that relates the flowing item to the instances of the connector’s enclosing block.
This property is applicable only for item flows assigned to connectors. The multiplicity is zero if the item flow is assigned to
an Association. 56

Link [UML]: A Link is a connection between two objects. 18

Loop Node [UML]: A Loop Node is a structured activity node that represents a loop with the setup, test, and body sections.
137

Merge [UML]: A Merge is a control node that brings together multiple alternate flows. It is not used to synchronize concur-
rent flows, but to accept one among several alternate flows. 137

Model [UML]: A Model is a special kind of Package. It contains a (hierarchical) set of elements that describe the physical
system being modeled. A model owns or imports all the elements needed to represent a complete physical system accord-
ing to its purpose. 90

moe [SysML]: moe (measure of effectiveness) represents a parameter whose value is critical for achieving the desired cost
effectiveness mission. 94

Object Flow [UML]: An Object Flow is an activity edge that can have objects or data passing along it. An object flow models
the flow of values to or from the object nodes. 136

Object Node [UML]: An Object Node is an abstract activity node that is part of defining object flow in an activity. Object
nodes can be used in a variety of ways, depending on where objects are flowing from and to. 135

Objective Function [SysML]: An Objective Function (also known as 'optimization' or 'cost function') is used for determining
the overall value of an alternative in terms of weighted criteria and/or moe's. 94

Opaque Action [UML]: An Opaque Action is an action that introduces discipline to implement specific actions or to be used
as a temporary placeholder before some other actions are chosen. 135

Output Expansion Node [UML]: An Output Expansion Node is an object node used for indicating a flow out of a region that
combines individual elements into a collection for use outside the region. 136

Output Pin [UML]: An Output Pin is a pin that holds output values produced by an action. Output pins are object nodes that
deliver values to other actions through object flows. 138

Package [UML]: A package is a namespace for its members, and it can contain other packages. Only packageable ele-
ments can be owned by members of a package. By virtue of being a namespace, a package can import either individual
members of other packages, or all the members of other packages. 89

Package Import [UML]: A Package Import is defined as a directed relationship that identifies a package whose members are
to be imported by a namespace. 91

Part Property [MDSysML]: A Part Property is a property that specifies a part with strong ownership and coincidental lifetime
of its containing Block. It describes a local usage or a role of the typing Block in the context of the containing Block. Every
Part Property has ‘composite’ AggregationKind and is typed by a Block. Part Properties are displayed in the ‘parts’ compart-
ment. 54

Performance Requirement [SysML]: A Performance Requirement refers to a requirement that quantitatively measures the
extent to which a system or a system part satisfy a required capability or condition. 100

Physical Requirement [SysML]: A Physical Requirement specifies the physical characteristics and/or physical constraints of
a system, or a system part. 101

Port [UML]: A Port defines an interaction point on a Block or a part, allowing you to specify what can flow in/out of the Block/
part or what services the block/part requires (expects) from or provides (offers) to its environment. Ports are connected by
connectors to other parts or other ports. 18

Quantity Kind [SysML]: A Quantity Kind (in SysML 1.0 and 1.1, called ‘Dimension’) is a kind of quantity that can be mea-
sured using defined and unrestricted units of measurement. For example, length, a quantity kind, may be measured by
meter, kilometer, or foot units. 16

Reference Property [MDSysML]: A Reference Property is a property that specifies a reference of its containing Block to
another Block. Every Reference Property has ‘none’ AggregationKind and is typed by a block. Reference Properties are dis-
played in the ‘references’ compartment. 54

Refine [UML]: A 'Refine' relationship is a dependency intended to describe how a model element or a set of elements are
used to further refine a requirement. Alternatively, it can be used to show how a text-based requirement refines a model ele-
ment. 103

Requirement [SysML]: A Requirement specifies a capability or a condition that must (or should) be satisfied. Requirements
are used to establish a contract between the customer (or other stakeholders) and those responsible for designing and
implementing the system. A requirement can also appear on other diagrams to show its relationship to other modeling ele-
ments. 100

Satisfy [SysML]: A 'Satisfy' relationship is a dependency between a requirement and a model element that fulfills that
requirement. As with other dependencies, the arrow direction points from the satisfying (client) model element to the (sup-
plier) requirement that is satisfied. 102

Select Nested Part: Click this button to display a nested part inside a given context. For more information, see Section 5.2.3
SysML IBD Specific Features: (vii) Select Nested Part. 56

Send Signal Action [UML]: A Send Signal Action is an action that creates a signal instance from its inputs, and transmits it to
the target object, where it may trigger the state machine transition or the execution of an activity. 136

Sensor: A Sensor is a special external system that forwards information from the environment to the system under develop-
ment. For example, Temperature sensor [1]. 151

Sequence Node [UML]: A Sequence Node is a structured activity node that executes its actions in order. 138

Shared Property [MDSysML]: A Shared Property is a property that specifies a shared part of its containing block. Every
Shared Property has ‘shared’ Aggregationkind and is typed by a block. Shared Properties are displayed in the ‘references’
compartment. 54

Structured Activity Node [UML]: A Structured Activity Node is an executable activity node that may have an expansion into
the subordinate nodes. The structured activity node represents a structured portion of the activity that is not shared with any
other structured node, except for nesting. 137

Structured Block [SysML]: A Structured block is a Block element that contains an Internal Block Diagram and a hyperlink to
it. 17

Subsystem [UML]: A Subsystem is treated as an abstract single unit. It groups model elements by representing the behav-
ioral unit in a physical system. 152

Subsystem: A Subsystem is a typically large, encapsulated block within a larger system [1]. 15

Swimlanes [UML]: Swimlanes are used to organize actions and sub-activities according to the class allocated to each swim-
lane header and partition an activity diagram. 138

System Boundary [UML]: A System Boundary is another kind of representation of a package. A system boundary element
consists of use cases related by Exclude or Include (uses) relationships, which are visually located inside the system
boundary rectangle. 152

System Context: A System context element is a virtual container that includes the entire system and its actors [1]. 15

System: A System is an artificial artifact consisting of blocks that pursue a common goal which cannot be achieved by the
system's individual elements. A block can be a software, hardware, a person, or an arbitrary unit [1]. 15

Test Case (Activity / StateMachine / Interaction) [SysML]: A test case is a method for verifying a requirement. 101

Time Event [UML]: A Time Event specifies a point of time with an expression, which may be absolute or might be relative to
some other points of time. 136

Trace [UML]: A ‘Trace’ relationship is a dependency that provides a general purpose relationship between a requirement
and any other model elements. 102

Unit [SysML]: A Unit is a particular value that can be used to specify a quantity of a dimension. A unit often relies on precise
and reproducible measuring techniques. For example, a unit of length such as meter may be specified as a multiple of a
particular wavelength of light. A unit can also use less stable or precise ways to express some values, such as costs
expressed in some currencies, or a severity rating measured by a numerical scale. 16

Usability Requirement [MDSysML]: A Usability Requirement specifies the fitness for use of a system for its users and other
actors. 101

Usage [UML]: A Usage is a dependency in which one element (the client) requires the presence of another element (the
supplier) for its correct functioning or implementation. 19

Use Case [UML]: A Use Case is a kind of behavior-related classifier that represents a declaration of an offered behavior.
Each use case specifies a particular behavior, possibly including the variants that the subject can perform in collaboration
with one or more actors. The subject of a use case could be a physical system or any other element that may initiate a
behavior, such as a component, a subsystem, or a class. 152

User System: An User System is a special external system that serves as medium between a user and the system without
having its own interests in the communication. For example, Input Device or Display [1]. 151

Value Pin [UML]: A Value Pin is an input pin that provides a value to an action that does not come from an incoming object
flow edge. 138

Value Property [MDSysML]: A Value Property is a property that specifies the quantitative property of its containing Block.
Every Value Property is typed by either a SysML Value Type or UML Data Type. Value Properties are displayed in the ‘val-
ues’ compartment. 54

Value Type [SysML]: A Value Type is a type which defines values that can be used to provide information on a system, but
cannot be identified as the target of any reference. These values may be used to type properties, operation parameters, or,
potentially, other elements within SysML. 16

Verify [SysML]: A 'Verfiy' relationship is a dependency between a requirement and a test case or a model element that can
determine whether the system fulfills the requirement. As with other dependencies, the arrow direction points from the (cli-
ent) test case to the (supplier) requirement. 102

View [SysML]: A view is a representation of a whole system from the perspective of a single viewpoint. A view can only own
element import, package import, comment, and constraint elements. 89

ViewPoint [SysML]: A viewpoint is a specification of the conventions and rules for constructing and using a view for the pur-
pose of addressing a set of stakeholder concerns. The languages and methods for specifying a view can reference methods

and languages in another viewpoint. They specify the elements expected to be represented in the view that may be formally
or informally defined. 90

A
Accept Event Action 136
Action 135
Accept Event Action 136
Any Action 136
Behavior 139
Call Operation Action 135
Name Display Mode 138
Opaque Action 135
Send Signal Action 136
Active Validation 161
Options 164
SysML Constraints 167
Activity Decomposition Hierarchy Wizard 144
Activity Final 137
Activity Parameter Node 136
Actor 151, 152
Actuator 151
Boundary System 151
Environmental Effect 151
External System 151
Sensor 151
User System 151
Actuator 151
Aggregation 19
Directed Aggregation 19
Any Action 136
Association 19, 153
Aggregation 19
Association Block 18
Composition 19
Directed Aggregation 19
Directed Association 19
Directed Composition 19
Association Block 18
Creating an Association Block 26
Automatic Block Structure Display 73
Automatic Instantiation 28

B

BDD 14

Binding Connector 95
Using Binding Connector 99

Block 14, 17
Association Block 18
Constraint Block 15
Context-Specific Value Compartments 175
Creating Instances 28
Display Parts 57
Display Ports 58
Displaying Structure 73
Domain 15
External 15
Feature-based Compartments 171
Inserting a New SysML Diagram 23
Inserting a New SysML Property 20

Sorting properties into SysML-style Compartments 23

Structured Block 17

Subsystem 15

System 15

System Context 15

Using Block 45
Boundary System 151
Browser

Structure Browser 186
Business Requirement 101

C
Call Operation Action 135
Select Operation 140
Component
Subsystem 152
Composition 19
Directed Composition 19
Conditional Node 137
Conform 90
Connector 56, 95, 96
Binding Connector 95
Constraint Block 15
Display Parameters 97
Objective Function 94
Using Constraint Block 46, 98
Constraint Parameter
Binding Connector 95
Constraint Property 54, 95
Display Parameters 97
Objective Function 94
Context-Specific Value Compartments 175
Value Propagation 183
Control Flow 136
Copy 102
Using Copy 122

D
Data Store 136
Data Type 17
Enumeration 17
Quantity Kind 16
Unit 16
Value Type 16
Decision 137
Dependency Matrix 195
SysML Dependency Matrices 197
SysML Allocation Matrix 197
SysML Editable Matrices 198
SysML Allocation Matrix 198
SysML Satisfy_Requirement Matrix 199
SysML Verify_Requirement Matrix 200
SysML Refine_Requirement Matrix 198
SysML Satisfy_Requirement Matrix 198
SysML Verify_Requirement Matrix 198
Use Case 155
Derive 102
Using Derive 121
Design Constraint 101
diagrams 13, 14, 53, 88, 93, 99, 134, 149
sysml 13
SysML Activity Diagram 134
SysML Block Definition Diagram 14
SysML Internal Block Diagram 53
SysML Package Diagram 88
SysML Parametric Diagram 93
SysML Requirement Diagram 99
SysML Use Case Diagram 149
Directed Aggregation 19
Directed Association 19
Directed Composition 19
Distributed Property 55, 96
Domain 15
Using Domain 45
Dynamic Centerlines 141

E

Element Import 91
Enumeration 17, 18
Environmental Effect 151
Exception Handler 137

Expansion Region 137
Extend 153
Extended Requirement 100
External 15

Using External 46
External System 151
Extract Structure 77

F
Feature-based Compartments 171
Flow Final 137
Flow Port 18, 55, 96
Using Flow Port 82
Flow Property 56, 96
Flow Specification 16
Using Flow Specification 47
Fork/Join
Fork/Join Horizontal 137
Fork/Join Vertical 137
Fork/Join Horizontal 137
Fork/Join Vertical 137
Functional Requirement 100

G
Generalization 19, 153

|
IBD 53
Include 152
Initial Node 137
Input Expansion Node 136
Input Pin 138
installation 6
Instance 18
Link 18
Quantity Kind 16
Unit 16
Interface 16, 18
Creating a New Provided/Required Interface(s) 64
Displaying a Provided/Required Interface(s) 67
Flow Specification 16
Interface Realization 18
Interface Realization 18
Interface Requirement 100
Iltem Property 56, 97

L
Link 18
Loop Node 137

M
Measure of Effectiveness 94
Merge 137
Migrating Old project 207
Model 90

System Boundary 152
modeling language

SysML 6

UML 6
moe 94

N
Nested Part 56
Node
Activity Final 137
Activity Parameter Node 136
Conditional Node 137
Data Store 136
Flow Final 137
Initial Node 137

Input Expansion Node 136

Loop Node 137

Object Node 135

Output Expansion Node 136

Sequence Node 138

Structured Activity Node 137
Numbering Requirement IDs 106

o

Object Flow 136

Object Node 135, 136
Objective Function 94
Opaque Action 135

Output Expansion Node 136
Output Pin 138

P
Package 89, 90, 152
Element Import 91
Model 90
Package Import 91
System Boundary 152
View 89
Package Import 91
Part Property 54, 95
Performance Requirement 100
perspective 6
system engineer 6
Physical Requirement 101
Pin
Input Pin 138
Output Pin 138
Value Pin 138
Port 18, 56, 96
Creating a New Provided/Required Interface(s) 64
Displaying a Provided/Required Interface(s) 67
Flow Port 18, 55
Projects
Specified Template 9
SysML 8
Property
Constraint Property 54
Context-Specific Value Compartments 175
Display Ports 58
Display/Suppress Structure Compartment 69
Distributed Property 55
Edit Compartment 59
Extract Structure 77
Feature-based Compartments 171
moe 94
Nested Part 56
Part Property 54
Reference Property 54
Shared Property 54
Show Default Value 61
Show Slot Type 62
Value Property 54

Q
Quantity Kind 16

R

Refactor
Changing Requirement Type 104
Extract Structure 77

Reference Property 54, 95

Refine 103

Report Wizard 208
Allocation Report Templates 226
Requirement Report Templates 213

Requirement Dependencies Report 221
Requirement Diagram 214
Requirement Report 216
Requirement Table (Type A) 214
Requirement Table (Type B) 215
Requirement Table Diagram Report 225

Templates 208

Requirement 100

Business Requirement 101

Changing Requirement Type 104

Copy 102

Derive 102

Design Constraint 101

Extended Requirement 100

Functional Requirement 100

Interface Requirement 100

Numbering Requirement IDs 106

Performance Requirement 100

Physical Requirement 101

Refine 103

Requirements Table 122

Satisfy 102

Tabular Diagram 122

Test Case 101

Trace 102

Usability Requirement 101

Using Requirement 118

Using Requirement Subtypes 120

Verify 102

Requirements Table 122

Requirement Table Diagram Report 225

SysML Dependency Matrices 197

SysML project 9

Use Case Dependency Matrix Template 155
Test Case 101

Using Test Case 121
Time Event 136
Trace 102

U

UML 6

Unit 16
Using Unit 46

Usability Requirement 101

Usage 19

Use Case 152
Dependency Matrix Template 155
Extend 153
Include 152
Inserting New Extension Points 155
Use Case Numbering 153

Use Case Numbering 153

User System 151

\'
Validation

Active Validation 161
Validation 156
Value Pin 138
Value Propagation 183
Value Property 54, 95
Value Type 16

Using Value Type 47

sample 6 '
Satisfy 102 xgrlfy81902
Using Satisfy 121 lew

search 13 Copfornj 90
Select Nested Part 56, 71, 96 \l;.Sln%V.leW983
Send Signal Action 136 ViewPoint

ViewPoint 90
Sensor 151

Conform 90

Sequence Node 138
Shared Property 54, 95
Structure Browser 186
Structured Activity Node 137 w)) .
Structured Block 17 Working with Teamwork Project 207
Subsystem 15, 152
Using Subsystem 46
Swimlanes 138
Swimlane Allocations 148
SysML 6
SysML project 8
System 15
Using System 46
System Boundary 152
System Context 15
Using System Context 46

Using ViewPoint 93

T
Teamwork 207
Migrating Old project 207
Working with Teamwork Project 207
Templates
Report Wizard 208
Allocation Report Templates 226
Requirement Report Templates 213
Requirement Dependencies Report 221
Requirement Diagram 214
Requirement Report 216
Requirement Table (Type A) 214
Requirement Table (Type B) 215

	Contents
	1. Introduction
	2. Installation
	3. System Engineer Perspective
	4. Working with SysML Projects
	4.1 Creating Blank SysML Project
	4.2 Creating New SysML Project from Specified Template
	4.3 Using OMG SysML Style
	4.4 Using QUDV Model Library
	4.5 Using Quick Search Dialog

	5. SysML Diagrams
	5.1 SysML Block Definition Diagrams (BDD)
	5.1.1 SysML BDD Metamodel and Elements
	5.1.2 SysML BDD Toolbar
	5.1.3 SysML BDD Specific Features
	5.1.4 Creating Instances of Blocks with Complex Structure
	5.1.5 Using SysML BDD Elements
	5.1.6 Converting Data Types to SysML Value Types
	5.1.7 SysML Callout Box

	5.2 SysML Internal Block Diagrams (IBD)
	5.2.1 SysML IBD Metamodel and Elements
	5.2.2 SysML IBD Toolbar
	5.2.3 SysML IBD Specific Features
	5.2.4 Displaying Structures of Blocks in Compartments or in IBDs
	5.2.5 Extract Structure
	5.2.6 Using SysML IBD Elements

	5.3 SysML Package Diagrams
	5.3.1 SysML Package Diagram Metamodel and Elements
	5.3.2 SysML Package Diagram Toolbar
	5.3.3 Using SysML Package Diagram Elements

	5.4 SysML Parametric Diagrams
	5.4.1 SysML Parametric Diagram Metamodel and Elements
	5.4.2 SysML Parametric Diagram Toolbar
	5.4.3 SysML Parametric Diagram Specific Features
	5.4.4 Using Parametric Diagram Elements

	5.5 SysML Requirement Diagrams
	5.5.1 SysML Requirement Diagram Metamodel and Elements
	5.5.2 SysML Requirement Diagram Toolbar
	5.5.3 SysML Requirement Diagram Specific Features
	5.5.4 Numbering Requirement IDs
	5.5.5 Using SysML Requirement Diagram Elements
	5.5.6 SysML Requirements Table

	5.6 SysML Activity Diagrams
	5.6.1 SysML Activity Diagram Metamodel and Elements
	5.6.2 SysML Activity Diagram Toolbar
	5.6.3 SysML Activity Diagram Specific Features
	5.6.4 Using Activity Diagram Elements

	5.7 SysML Use Case Diagrams
	5.7.1 SysML Use Case Diagram Metamodel and Elements
	5.7.2 SysML Use Case Diagram Toolbar
	5.7.3 SysML Use Case Diagram Specific Features
	5.7.4 Using SysML Use Case Diagram Elements

	6. Validation
	6.1 Active Validation
	6.1.1 Active Validation Options

	6.2 SysML Constraints

	7. Feature-based Compartments
	7.1 Expanding and Suppressing Feature-based Compartments
	7.2 Displaying Options in Feature-based Compartments

	8. Context-Specific Value Compartments
	8.1 Progressive Reconfiguration
	8.2 Deep Reconfiguration
	8.3 Context-Specific Value Compartments
	8.3.1 Advantages of Context-Specific Value Compartments
	8.3.2 Using Context-Specific Value Compartments
	8.3.3 Displaying Context-Specific Value Compartments
	8.3.4 Selecting the Context of Context-Specific Value Compartments
	8.3.5 Customizing Context-Specific Value Compartment Display
	8.3.6 Value Propagation

	9. Structure Browser
	9.1 Opening Structure Browser
	9.2 Customizing Structure Browser Display
	9.2.1 Structure Browser Shortcut Menu
	9.2.2 Structure Browser Toolbar

	9.3 Display Options
	9.3.1 Display as Plain List
	9.3.2 Show Inherited Structure
	9.3.3 Show Full Type in Browser
	9.3.4 Show Applied Stereotypes in Browser
	9.3.5 Show Auxiliary Resources
	9.3.6 Filter

	9.4 Additional Structure Browser Menus
	9.4.1 Go To > Type <name> in Structure Tree Menu
	9.4.2 Go To > Owner Menu

	9.5 Additional Diagram Menu
	9.5.1 Select in Structure Tree Menu

	10. Dependency Matrix
	10.1 Opening Dependency Matrix
	10.2 Working with Dependency Matrix Templates
	10.3 SysML Editable Matrices
	10.3.1 SysML Allocation Matrix
	10.3.2 SysML Satisfy_Requirement Matrix
	10.3.3 SysML Verify_Requirement Matrix
	10.3.4 Creating SysML Editable Matrices
	10.3.5 Building Matrices
	10.3.6 Editing Matrix

	11. Teamwork
	11.1 Working with Teamwork Project

	12. Report Wizard and Template
	12.1 Report Wizard
	12.2 Requirement Report Templates
	12.2.1 Requirement Diagram
	12.2.2 Requirement Table (Type A)
	12.2.3 Requirement Table (Type B)
	12.2.4 Requirement Report
	12.2.5 Coverage Analysis
	12.2.6 Requirement Dependencies Report
	12.2.7 Requirements Table Diagram Report

	12.3 Allocation Report Templates
	12.3.1 Allocation Table (Type A)
	12.3.2 Allocation Table (Type B)
	12.3.3 Allocation Table (Type C)

	13. Model Library for Quantities, Units, Dimensions and Values (QUDV)
	13.1 QUDV Model Library in SysML Plugin
	13.1.1 QUDV
	13.1.2 SI Definitions
	13.1.3 SI Specializations
	13.1.4 SI Value Type Library

	13.2 Migrating Existing SysML Project To Use QUDV Model Library
	13.2.1 Using QUDV Model Library in SysML Project
	13.2.2 Replacing/Modifying Existing Value Types
	13.2.3 Modifying Units and Quantity Kinds of Existing Value Types

	13.3 Creating New Quantity Kind, Unit or Value Type in QUDV Library
	13.3.1 Creating New Quantity Kind
	13.3.2 Creating New Unit
	13.3.3 Creating New Value Type

	13.4 Validation Rules for Detecting the Using of Obsoleted Units and Quantities

	14. Traceability
	15. Open API
	15.1 Stereotype Usage
	15.1.1 SysML Profile
	15.1.2 MD Customization for SysML Profile

	A. Glossary
	B. Index

